2023届辽宁省盘锦市第一中学数学九年级第一学期期末监测试题含解析_第1页
2023届辽宁省盘锦市第一中学数学九年级第一学期期末监测试题含解析_第2页
2023届辽宁省盘锦市第一中学数学九年级第一学期期末监测试题含解析_第3页
2023届辽宁省盘锦市第一中学数学九年级第一学期期末监测试题含解析_第4页
2023届辽宁省盘锦市第一中学数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.关于x的二次函数y=x2﹣mx+5,当x≥1时,y随x的增大而增大,则实数m的取值范围是()A.m<2 B.m=2 C.m≤2 D.m≥22.在以下四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.如图,在正方形网格中,△ABC的三个顶点都在格点上,则cosB的值为()A. B. C. D.14.计算的结果是()A. B. C. D.5.一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根6.二次函数的图象与轴的交点个数是()A.2个 B.1个 C.0个 D.不能确定7.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A.4 B.3 C.2 D.18.已知关于x的方程x2-kx-6=0的一个根为x=-3,则实数k的值为()A.1 B.-1 C.2 D.-29.已知反比例函数,下列结论中不正确的是.()A.图象必经过点(3,-2) B.图象位于第二、四象限C.若,则 D.在每一个象限内,随值的增大而增大10.如图,⊙O中弦AB=8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是()A.4 B.5 C.6 D.1°11.抛物线y=2(x﹣1)2+3的对称轴为()A.直线x=1B.直线y=1C.直线y=﹣1D.直线x=﹣112.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0 B.﹣ C.2 D.﹣2二、填空题(每题4分,共24分)13.如图,在正方形和正方形中,点和点的坐标分别为,,则两个正方形的位似中心的坐标是___________.14.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.15.分解因式:x3﹣16x=______.16.点P、Q两点均在反比例函数的图象上,且P、Q两点关于原点成中心对称,P(2,3),则点Q的坐标是_____.17.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.18.若线段a、b满足,则的值为_____.三、解答题(共78分)19.(8分)2019年九龙口诗词大会在九龙口镇召开,我校九年级选拔了3名男生和2名女生参加某分会场的志愿者工作.本次学生志愿者工作一共设置了三个岗位,分别是引导员、联络员和咨询员.(1)若要从这5名志愿者中随机选取一位作为引导员,求选到女生的概率;(2)若甲、乙两位志愿者都从三个岗位中随机选择一个,请你用画树状图或列表法求出他们恰好选择同一个岗位的概率.(画树状图和列表时可用字母代替岗位名称)20.(8分)超市销售某种儿童玩具,该玩具的进价为100元/件,市场管理部门规定,该种玩具每件利润不能超过进价的60%.现在超市的销售单价为140元,每天可售出50件,根据市场调查发现,如果销售单价每上涨2元,每天销售量会减少1件。设上涨后的销售单价为x元,每天售出y件.(1)请写出y与x之间的函数表达式并写出x的取值范围;(2)设超市每天销售这种玩具可获利w元,当x为多少元时w最大,最大为名少元?21.(8分)如图,在△ABC中,AD是BC边上的中线,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)过点A作AM⊥BC于点M,求DE:AM的值;(3)若S△FCD=5,BC=10,求DE的长.22.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D.(1)若∠BAD=80°,求∠DAC的度数;(2)如果AD=4,AB=8,则AC=.23.(10分)如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C、D为监测点,已知点C、D、B在同一直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°(1)求道路AB段的长(结果精确到1米)(2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.700224.(10分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)25.(12分)同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.26.如图,菱形ABCD的顶点A,D在直线l上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN,当MN∥B′D′时,解答下列问题:(1)求证:△AB′M≌△AD′N;(2)求α的大小.

参考答案一、选择题(每题4分,共48分)1、C【分析】先求出二次函数的对称轴,再根据二次函数的性质解答即可.【详解】解:二次函数y=x2﹣mx+5的开口向上,对称轴是x=,∵当x≥1时,y随x的增大而增大,∴≤1,解得,m≤2,故选:C.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.2、B【分析】旋转180后能够与原图形完全重合即是中心对称图形,根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【分析】先根据勾股定理求出AB的长,再根据余弦的定义求解即可.【详解】∵AC=2,BC=2,∴AB=,∴cosB=.故选B.【点睛】本题考查了勾股定理,以及锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.4、C【分析】根据二次根式的性质先化简,再根据幂运算的公式计算即可得出结果.【详解】解:==,故选C.【点睛】本题考查了二次根式的性质和同底数幂的乘方,熟练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键.5、D【分析】根据方程的系数结合根的判别式,即可得出△>0,由此即可得出原方程有两个不相等的实数根.【详解】解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.【点睛】本题考查的知识点是根据一元二次方程根的判别式来判断方程的解的情况,熟记公式是解此题的关键.6、A【分析】通过计算判别式的值可判断抛物线与轴的交点个数.【详解】由二次函数,

∴.∴抛物线与轴有二个公共点.

故选:A.【点睛】本题考查了二次函数与一元二次方程之间的关系,抛物线与轴的交点个数取决于的值.7、B【解析】试题分析:当x=0时y=6,x=1时y=6,x=﹣2时y=0,可得,解得,∴抛物线解析式为y=﹣x2+x+6=﹣(x﹣)2+,当x=0时y=6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称轴为x=,故②不正确;当x=3时,y=﹣9+3+6=0,∴抛物线过点(3,0),故③正确;∵抛物线开口向下,∴在对称轴左侧y随x的增大而增大,故④正确;综上可知正确的个数为3个,故选B.考点:二次函数的性质.8、B【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【详解】解:因为x=-3是原方程的根,所以将x=-3代入原方程,即(-3)2+3k−6=0成立,解得k=-1.故选:B.【点睛】本题考查的是一元二次方程的根即方程的解的定义,解题的关键是把方程的解代入进行求解.9、C【分析】A.将x=3代入反比例函数,根据所求得的y值即可判断;B.根据反比例函数的k值的正负即可判断;C.结合反比例函数的图象和性质即可判断;D.根据反比例函数的k值的正负即可判断.【详解】解:A.当x=3时,,故函数图象必经过点(3,-2),A选项正确;B.由反比例函数的系数k=-6<0,得到反比例函数图象位于第二、四象限,本选项正确;C.由反比例函数图象可知:当,则,故本选项不正确;D.由反比例函数的系数k=-6<0,得到反比例函数图象在各自象限y随x的增大而增大,故本选项正确.故选:C.【点睛】本题考查反比例函数的性质,反比例函数(k≠0),当k>0时,图象位于第一、三象限,且在每一个象限,y随x的增大而减小;当k<0时,图象位于第二、四象限,且在每一个象限,y随x的增大而增大.在做本题的时候可根据k值画出函数的大致图,结合图象进行分析.10、B【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,设OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【详解】解:连接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,设OA=OC=x,则OE=OC-CE=x-2在Rt△AOE由勾股定理得:即:,解得:,故选择:B【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11、A【解析】解:∵y=2(x﹣1)2+3,∴该抛物线的对称轴是直线x=1.故选A.12、C【分析】先求出点A1的坐标,再根据旋转的性质求出点A1的坐标,然后根据图象上点的纵坐标循环规律即可求出m的值.【详解】当y=0时,x1﹣3x=0,解得:x1=0,x1=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A1的坐标为(6,0).∵1010÷6=336……4,∴当x=4时,y=m.由图象可知:当x=1时的y值与当x=4时的y值互为相反数,∴m=﹣(1×1﹣3×1)=1.故选:C.【点睛】此题考查的是探索规律题和求抛物线上点的坐标,找出图象上点的纵坐标循环规律是解决此题的关键.二、填空题(每题4分,共24分)13、或【分析】根据位似变换中对应点的坐标的变化规律,分两种情况:一种是当点E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【详解】∵正方形和正方形中,点和点的坐标分别为,∴(1)当点E和C是对应顶点,G和A是对应顶点,位似中心就是EC与AG的交点.设AG所在的直线的解析式为解得∴AG所在的直线的解析式为当时,,所以EC与AG的交点为(2)A和E是对应顶点,C和G是对应顶点.,则位似中心就是AE与CG的交点设AE所在的直线的解析式为解得∴AE所在的直线的解析式为设CG所在的直线的解析式为解得∴AG所在的直线的解析式为联立解得∴AE与CG的交点为综上所述,两个正方形的位似中心的坐标是或故答案为或【点睛】本题主要考查位似图形,涉及了待定系数法求函数解析,求位似中心,正确分情况讨论是解题的关键.14、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.15、x(x+4)(x–4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案为x(x+4)(x﹣4).16、【分析】由题意根据反比例函数的图象是中心对称图形以及关于原点成中心对称的点的坐标特征进行分析即可求解.【详解】解:∵反比例函数的图象是中心对称图形,且P、Q两点关于原点成中心对称,∴Q(﹣2,﹣3).故答案为:(﹣2,﹣3).【点睛】本题主要考查反比例函数图象的中心对称性,注意掌握反比例函数的图象是中心对称图形以及关于原点成中心对称的点的坐标特征.17、8【解析】试题分析:设红球有x个,根据概率公式可得,解得:x=8.考点:概率.18、【分析】由可得b=2a,然后代入求值.【详解】解:由可得b=2a,所以=,故答案为.【点睛】本题考查分式的化简求值,掌握比例的性质是本题的解题关键.三、解答题(共78分)19、(1)随机选取一位作为引导员,选到女生的概率为;(2)甲、乙两位志愿者选择同一个岗位的概率为.【分析】(1)直接利用概率公式求出即可;

(2)用列表法表示所有可能出现的情况,共9中可能的结果数,选择同一岗位的有三种,可求出概率.【详解】(1)5名志愿者中有2名女生,因此随机选取一位作为引导员,选到女生的概率为,即:P=,答:随机选取一位作为引导员,选到女生的概率为.(2)用列表法表示所有可能出现的情况:∴.答:甲、乙两位志愿者选择同一个岗位的概率为.【点睛】本题考查了随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.20、(1);(2)当x为160时w最大,最大值是2400元【分析】(1)根据“销售单价每增加2元,每天销售量会减少1件”表示出减少的件数,销量y=50-减少的件数;(2)根据“获利w=单利润×销量”可列出函数关系式,再根据二次函数的性质结合自变量x的取值范围即可得解.【详解】解:(1)由题上涨的单价为x-140元所以y=50-(x-140)÷2×1=(2)根据题意得,w=(x-100)()=∵a=﹣<0,∴当x<170时,w随x的增大而增大,∵该种玩具每件利润不能超过进价的60%∴∴x≤160∴当x=160时,w最大=2400,答:当x为160时w最大,最大值是2400元.【点睛】本题考查一次函数的应用,二次函数的应用,二次函数的性质.解决此题的关键为:①根据题中的数量关系列出函数关系式;②能根据二次函数的增减性以及自变量的取值范围求最值.21、(1)证明见解析;(2);(3).【分析】(1)利用D是BC边上的中点,DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定定理,就可以证明题目结论;(2)根据相似三角形的性质和等腰三角形的性质定理,解答即可;(3)利用相似三角形的性质就可以求出三角形ABC的面积,然后利用面积公式求出AM的值,结合,即可求解.【详解】(1)∵D是BC边上的中点,DE⊥BC,∴BD=DC,∠EDB=∠EDC=90°,∵DE=DE,∴△BDE≌△EDC(SAS),∴∠B=∠DCE,∵AD=AC,∴∠ADC=∠ACB,∴△ABC∽△FCD;(2)∵AD=AC,AM⊥DC,∴DM=DC,∵BD=DC,∴,∵DE⊥BC,AM⊥BC,∴DE∥AM,∴.(3)过点A作AM⊥BC,垂足是M,∵△ABC∽△FCD,BC=2CD,∴,∵S△FCD=5,∴S△ABC=20,又∵BC=10,∴AM=1.∵DE∥AM,∴∴,∴DE=.【点睛】本题主要考查相似三角形的判定与性质定理,等腰三角形的性质定理,掌握相似三角形的判定和性质定理是解题的关键.22、(1)∠DAC=40°,(2)【分析】(1)连结OC,根据已知条件证明AD//OC,结合OA=OC,得到∠DAC=∠OAC=∠DAB,即可得到结果;(2)根据已知条件证明平行四边形ADCO是正方形,即可求解;【详解】解:(1)连结OC,则OCDC,又ADDC,∴AD//OC,∴∠DAC=∠OCA;又OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC=∠DAB,∴∠DAC=40°.(2)∵,AB为直径,∴,∵,∴,∵AD∥OC,∴四边形ADCO是平行四边形,又,,∴平行四边形ADCO是正方形,∴.故答案是.【点睛】本题主要考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.23、(1)1395米;(2)超速,理由见解析;【分析】(1)根据锐角三角函数的定义即可求出答案.(2)求出汽车的实际车速即可判断.【详解】解:(1)在Rt△ACD中,AC=CD•tan∠ADC=400×2=800,在Rt△ABC中,AB==≈1395(米);(2)车速为:≈15.5m/s=55.8km/h<60km/h,∴该汽车没有超速.【点睛】本题考查解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.24、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈=20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.25、(1)详见解析;(2)1.【分析】(1)先证明四边形AECF是平行四边形,再证明AF=CE即可.(2)在RT△ABE中利用勾股定理求出BE、AE,再根据S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC求出面积即可.【详解】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∴∠FA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论