材料热分析课件_第1页
材料热分析课件_第2页
材料热分析课件_第3页
材料热分析课件_第4页
材料热分析课件_第5页
已阅读5页,还剩149页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章热重分析

ThermalGravimetricAnalysis

(TGA)28.2TG基本原理8.3TG实验技术8.4TG在材料中的应用8.1热分析简介8.1热分析简介现代热分析技术指在程序控温下,测量物质的物理性质随温度变化的一类技术。通过检测样品本身的热物理性质随温度或时间的变化,来研究物质的分子结构、聚集态结构、分子运动的变化等。热物理性质变化:温度和热焓的变化质量的变化尺寸的变化力学特性的变化电磁学变化从事材料工作必备的几种热分析仪器:热重分析仪(TGA)差热分析仪(DTA)差示扫描量热仪(DSC)热机械分析仪(DMA)用于测量物质的静态转变、熔融、脱水、升华、吸附、解吸、玻璃化转变、液晶转变、燃烧、固化、模量、阻尼、热化学常数、纯度、分解等性质的转变与反应。8.2TG基本原理热重法又称热失重法(Thermogravimetry,TG)热重分析通常可分为两类:动态(升温)和静态(恒温)。在程序控温下,测量物质的质量随温度(或时间)的变化关系。对于材料的热稳定性、组成以及热反应变化进行有效表征。加热器微量热天平铂金样品盘7

静态法等压质量变化测定、等温质量变化测定。等压质量变化测定:在程序控制温度下,测量物质在恒定挥发物分压下平衡质量与温度关系的一种方法。等温质量变化测定:在恒温条件下测量物质质量与温度关系的一种方法。准确度高,费时。准确度高,费时。动态法热重分析、微商热重分析。在程序升温下,测定物质质量变化与温度的关系。微商热重分析又称导数热重分析微商热重分析又称导数热重分析(Derivativethermogravimetry,简称,简称DTG)。81、热重分析仪热天平式记录天平、加热炉、程序控制温度系统、自动记录仪。9热天平种类10弹簧称式谱图表示方法:样品的重量或重量分数随温度或时间的变化曲线曲线陡降处为样品失重区,平台区为样品的热稳定区。梯度曲线曲线的纵坐标为质量mg或剩余百分数%表示;横坐标T为温度。用热力学温度(K)或摄氏温度(℃)。12DTG曲线上出现的峰指示质量发生变化,峰的面积与试样的质量变化成正比,峰顶与失重变化速率最大处相对应。8.3TG实验技术试样量:5-10mg试样皿:铝、三氧化二铝或铂金1.试样量和试样皿注意事项:对于膨胀型的材料适量减少试样量;试样量过多,传质阻力大,使试样温度偏离线性程序升温,TG曲线发生变化;试样粒度越小越好,尽可能平铺;<600℃采用铝皿,

>600℃采用三氧化二铝皿;碱性样品不能采用铝皿。2.升温速率1-20℃/min注意事项:升温速度越快,温度滞后越严重;升温速度快,使曲线的分辨力下降,会丢失某些中间产物的信息,如对含水化合物慢升温可以检出分步失水的一些中间物;同系列样品比较,在没有特殊要求下最好采用相同升温速率。3.气氛的影响氮气、空气。流速:40-100mL/min,利于传热、逸出气体。注意事项:热天平周围气氛的改变对TG曲线影响显著。16(4)浮力及对流的影响。(5)挥发物冷凝的影响。解决方案:热屏板(6)温度测量的影响。

解决方案:利用具特征分解温度的高纯化合物或具特征居里点温度的强磁性材料进行温度标定。4.TG失重曲线的处理和计算起始分解温度外延起始温度外延终止温度终止温度TG-5%TG-50%TG-10%5.微商曲线(DTG)表示和意义重量的变化率与温度或时间的函数关系,是TG曲线对温度或时间的一阶导数。DTG曲线是一个热失重速率的峰形曲线。精确反映样品的起始反应温度,达到最大反应速率的温度(峰值),反应终止温度。利用DTG的峰面积与样品对应的重量变化成正比,可精确的进行定量分析。1.热稳定性的评价2.组成的剖析3.研究聚合物固化4.研究添加剂的作用8.4TG在材料研究中的应用5.研究降解反应动力学1.材料热稳定性的评价几种高分子材料的TG曲线比较起始失重温度热稳定性TG曲线比较示意图比较失重速率c>b>a2.材料组成的剖析添加剂的分析水2%树脂80%玻璃18%TG法确定玻璃钢材料中玻璃纤维成分的含量聚四氟乙烯中炭黑和SiO2的含量确定PTFE31.5%炭黑18.0%SiO2

50.5%乙丙橡胶中炭黑和油的含量共混物的分析各组分失重量=所有组分物质的失重×百分含量,再叠加得到共混物失重结果3.研究聚合物固化静态热重分析,适用于固化过程中失去低分子物的缩聚反应。利用酚醛树脂固化过程中生成水,测定脱水失重量最多的固化温度,其固化程度最佳。4.研究聚合物中添加剂的作用增塑剂聚合物中常用的添加增塑剂,其用量和品种不同,对材料作用效果不同。发泡剂发泡剂的性能和用量直接影响泡沫材料的性能和制造工艺条件。可获得适宜的成型温度条件,即发泡剂开始分解的温度。无机阻燃剂阻燃剂在聚合物中有特殊效果,阻燃剂的种类和用量选择适当,可大大改善聚合物材料的阻燃性能。5.研究聚合物的降解反应动力学降解反应动力学是研究材料降解的速度随时间、温度的变化关系,最终求出活化能、反应级数并对该反应机理进行解释。活化能是材料发生分解所需的临界能量,活化能越高,材料的热稳定性越好。材料的热分解动力学公式:失重率活化能反应级数气体常数升温速率指前因子以截距对ln(1-α)作图,可求出反应级数n和指前因子A在多个升温速率下,给定失重率,以作图,斜率为活化能E,截距为在多个升温速率下,给定失重率,以作图,斜率为活化能E,截距为33

第九章

差热分析法(DTA)

(DifferentialThermalAnalysis)TG/DTGINN2TG/DTGinN2TG/DTGINN2TG/DTGinN2ThedatafromTGandDTGofdifferentsamplesinN2TG/DTGinAIRTG/DTGinAIRThedatafromTGandDTGofdifferentsamplesin

air定义:在程序控制温度下,测量物质和参比物之间的温度差与温度关系的一种技术。当试样发生任何物理(如相转变、熔化、结晶、升华等)或化学变化时,所释放或吸收的热量使试样温度高于或低于参比物的温度,从而相应地在DTA曲线上得到放热或吸收峰。DTA2023/2/341差热曲线是由差热分析得到的记录曲线。纵坐标是试样与参比物的温度差ΔT,向上表示放热反应,向下表示吸热反应,横坐标为T(或t)。2023/2/342典型的DTA曲线DTA曲线术语2023/2/343基线:ΔT近似于0的区段(AB,DE段)。峰:离开基线后又返回基线的区段(如BCD)。吸热峰、放热峰峰宽:离开基线后又返回基线之间的温度间隔(或时间间隔)(B’D’)。峰高:垂直于温度(或时间)轴的峰顶到内切基线之距离(CF)。峰面积:峰与内切基线所围之面积(BCDB)。外推起始点(出峰点):峰前沿最大斜率点切线与基线延长线的交点(G)。2023/2/3449.1基本原理2023/2/3459.2差热曲线方程为了对差热曲线进行理论上的分析,从60年代起就开始进行分析探讨,但由于考虑的影响因素太多,以致于所建立的理论模型十分复杂,难以使用。1975年,神户博太郎对差热曲线提出了一个理论解析的数学方程式,该方程能够十分简便的阐述差热曲线所反映的热力学过程和各种影响因素。2023/2/346假设:试样S和参比物R放在同一加热的金属块W中,使之处于同样的热力学条件之下。1.试样和参比物的温度分布均匀(无温度梯度),且与各自的坩埚温度相同。2.试样、参比物的热容量CS、CR不随温度变化。3.试样、参比物与金属块之间的热传导和温差成正比,比例常数(传热系数)K与温度无关。2023/2/347设Tw为金属块温度,即炉温程序升温速率:当t=0时,TS=TR=Tw2023/2/3482023/2/349差热分析时,炉温Tw以φ开始升温,由于存在热阻,TS、TR均滞后于Tw,经过一段时间以后,两者才以φ升温。升温过程中,由于试样与参比物的热容量不同(Cs≠CR)它们对Tw的温度滞后并不同(热容大的滞后时间长),这样试样和参比物之间产生温差△T。当它们的热容量差被热传导自动补偿以后,试样和参比物才按照程序升温速度φ升温。此时△T成为定值△Ta,从而形成了差热曲线的基线。2023/2/350o-a之间是DTA基线形成过程2023/2/351此过程中ΔT的变化可用下列方程描述:当t足够大时,可得基线的位置:

2023/2/3521)程序升温速率Φ恒定才能获得稳定的基线;2)CR与CS越相近,ΔTa越小,因此试样和参比物应选用化学上相似的物质;3)升温过程中,若试样的比热有变化,ΔTa也发生变化,因此DTA曲线可以反映出试样比热变化;4)升温速率Φ值越小,ΔTa也越小。2023/2/353基线形成后继续升温,如果试样发生了吸热变化,此时试样总的热流率为:ΔH:试样全部熔化的总吸热量

参比物总热流率

2023/2/354式3-式6,得:

2023/2/355(一)在峰顶b点处,峰高(ΔTb-ΔTa)与导热系数K成反比,K越小,峰越高、尖,(峰面积几乎不变,因反应焓变化量为定值)。因此可通过降低K值来提高差热分析的灵敏度。2023/2/356(二)在反应终点C,反应终点C以后,ΔT将按指数函数衰减直至ΔTa(基线)2023/2/3572023/2/358(三)将(9-7)式积分整理后得到

S:差热曲线和基线之间的面积2023/2/359根据式(9-12)可得出下述结论:1.差热曲线的峰面积S和反应热效应ΔH成正比;2.传热系数K值越小,对于相同的反应热效应ΔH来讲,峰面积S值越大,灵敏度越高。(9-12)式中没有涉及程序升温速率φ,即升温速率φ不管怎样,S值总是一定的。由于ΔT和φ成正比,所以φ值越大峰形越窄越高。

2023/2/360差热分析仪的组成加热炉温差检测器温度程序控制仪信号放大器记录仪气氛控制设备2023/2/3619.3差热分析的影响因素1.仪器因素:炉子的形状结构与尺寸,坩埚材料与形状,热电偶位置与性能2.实验条件因素:升温速率、气氛3.试样因素:用量、粒度2023/2/362一、仪器因素的影响1)仪器加热方式、炉子形状、尺寸等,会影响DTA曲线的基线稳定性。2)样品支持器的影响3)热电偶的影响4)仪器电路系统工作状态的影响2023/2/363坩埚材料在差热分析中所采用的坩埚材料大致有:玻璃、陶瓷、α-Al2O3、石英和铂等。要求:对试样、产物(包括中间产物)、气氛都是惰性的,并且不起催化作用。对碱性物质(如Na2CO3)不能用玻璃、陶瓷类坩埚;含氟高聚物(如聚四氟乙烯)与硅形成化合物,也不能使用玻璃、陶瓷类坩埚;铂具有高热稳定性和抗腐蚀性,高温时常选用,但不适用于含有P、S和卤素的试样。另外,Pt对许多有机、无机反应具有催化作用,若忽视可导致严重的误差。2023/2/364二、实验条件的影响1.升温速率影响峰的形状、位置和相邻峰的分辨率。升温速率越大,峰位向高温方向迁移,峰变尖锐。使试样分解偏离平衡条件的程度也大,易使基线漂移,并导致相邻两个峰重叠,分辨力下降。慢的升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。但测定时间长,需要仪器的灵敏度高。2023/2/365升温速率增大时,峰位向高温方向迁移,峰形变陡。2023/2/366升温速率也对DTA曲线相邻峰的分辨率有影响。

在不同的升温速率下测定了胆甾类液晶的相变温度。2023/2/367随升温速率的增大,相邻峰间的分辨率下降。采用低的升温速率有利于小的相变的检测,提高了检测灵敏度。2023/2/368不同性质的气氛如氧化性、还原性和惰性气氛对DTA曲线的影响是很大的。如:在空气和氢气的气氛下对镍催化剂进行差热分析,所得到的结果截然不同(见图)。在空气中镍催化剂被氧化而产生放热峰。2.气氛的影响2023/2/3692023/2/370不同气氛下碳酸锶的热分解反应

2023/2/371SrCO3晶型转变温度(立方晶型变为六方晶型)927C基本不变,而分解温度变化很大。2023/2/372三、试样的影响在DTA中试样的热传导性和热扩散性都会对DTA曲线产生较大的影响,若涉及气体参加或释放气体的反应,还和气体的扩散等因素有关,显然这些影响因素与试样的用量、粒度、装填的均匀性和密实程度以及稀释剂等密切相关。2023/2/3731.试样用量的影响试样用量大,易使相邻两峰重叠,分辨力降低。一般尽可能减少用量,过多会使样品内部传热慢、温度梯度大,导致峰形扩大和分辨率下降。最多大至毫克。2023/2/3742023/2/3752.试样粒度的影响粒度会影响峰形和峰位,尤其对有气相参与的反应。通常采用小颗粒样品,样品应磨细过筛并在坩埚中装填均匀。同一种试样应选应相同的粒度。2023/2/3761#峰重叠;2#峰可明显区分;3#只出现两个峰。

CuSO4·5H2O粒度对DTA曲线的影响2023/2/3773.稀释剂的影响在差热分析中有时需要在试样中添加稀释剂,常用的稀释剂有参比物或其它惰性材料,添加的目的有以下几方面:改善基线;防止试样烧结;调节试样的热导性;增加试样的透气性,以防试样喷溅;配制不同浓度的试样。2023/2/3782023/2/3796.3.5差热分析的应用DTA曲线提供的信息:峰的位置峰的形状峰的个数2023/2/3801.材料的鉴别与成分分析应用差热分析对材料进行鉴别主要是根据物质的相变(包括熔融、升华和晶型转变等)和化学反应(包括脱水、分解和氧化还原等)所产生的特征吸热或放热峰。有些材料常具有比较复杂的DTA曲线,虽然不能对DTA曲线上所有的峰作出解释,但是它们象“指纹”一样表征着材料的特性。2023/2/3812023/2/382832.材料相态结构的变化2023/2/3842.材料相态结构的变化检测非晶态的分相最直接的方法是通过电镜观察,可直接观察样品的分相形貌,在扫描电镜分析中还可以进行电子探针分析,这样还可以探明分相中的组成。但电镜分析比较复杂,从制样到分析需要的周期比较长、而用DTA不仅制样简单,而且方便快速。2023/2/385引入CaF2的Na2O-CaO-SiO2系统试样的DTA2023/2/3863.凝胶材料的烧结进程研究87DTA存在的两个缺点:1)试样在产生热效应时,升温速率是非线性的,从而使校正系数K值变化,难以进行定量;2)试样产生热效应时,由于与参比物、环境的温度有较大差异,三者之间会发生热交换,降低了对热效应测量的灵敏度和精确度。→使得差热技术难以进行定量分析,只能进行定性或半定量的分析工作。基本原理为了克服差热缺点,发展了DSC。该法对试样产生的热效应能及时得到应有的补偿,使得试样与参比物之间无温差、无热交换,试样升温速度始终跟随炉温线性升温,保证了校正系数K值恒定。测量灵敏度和精度大有提高。89第十章差示扫描量热法(DSC)(DifferentialScanningCalorimetry)定义:在程序控制温度下,测量输给物质与参比物的功率差与温度的一种技术。分类:根据所用测量方法的不同1.功率补偿型DSC2.热流型DSC1.功率补偿型DSC测量的基本原理功率补偿型DSC仪器的主要特点1.试样和参比物分别具有独立的加热器和传感器见图。整个仪器由两套控制电路进行监控。一套控制温度,使试样和参比物以预定的速率升温,另一套用来补偿二者之间的温度差。2.无论试样产生任何热效应,试样和参比物都处于动态零位平衡状态,即二者之间的温度差T等于0。这是DSC和DTA技术最本质的区别。2.热流型DSC与DTA仪器十分相似,是一种定量的DTA仪器。不同之处在于试样与参比物托架下,置一电热片,加热器在程序控制下对加热块加热,其热量通过电热片同时对试样和参比物加热,使之受热均匀。纵坐标:热流率横坐标:温度T(或时间t)峰向上表示吸热向下表示放热在整个表观上,除纵坐标轴的单位之外,DSC曲线看上去非常像DTA曲线。像在DTA的情形一样,DSC曲线峰包围的面积正比于热焓的变化。DSC曲线10.2影响DSC的因素DSC的影响因素与DTA基本上相类似,由于DSC用于定量测试,因此实验因素的影响显得更重要,其主要的影响因素大致有以下几方面:1.实验条件:程序升温速率Φ,气氛2.试样特性:试样用量、粒度、装填情况、试样的稀释等。1.实验条件的影响

(1).升温速率Φ主要影响DSC曲线的峰温和峰形,一般Φ越大,峰温越高,峰形越大和越尖锐。实际中,升温速率Φ的影响是很复杂的,对温度的影响在很大程度上与试样的种类和转变的类型密切相关。如已二酸的固-液相变,其起始温度随着Φ升高而下降的。

在DSC定量测定中,最主要的热力学参数是热焓。一般认为Φ对热焓值的影响是很小的,但是在实际中并不都是这样。从室温到熔点之间有四个相(I、II、III、IV)之间的转变过程。随着升温速率的增大,硝酸铵的相转变峰温和热焓值是增高的。

(2).气氛实验时,一般对所通气体的氧化还原性和惰性比较注意,而往往容易忽略对DSC峰温和热焓值的影响。实际上,气氛的影响是比较大的。如在He气氛中所测定的起始温度和峰温比较低,这是由于炉壁和试样盘之间的热阻下降引起的,因为He的热导性约是空气的5倍,温度响应比较慢,而在真空中温度响应要快得多。2.试样特性的影响1)试样用量:不宜过多,多会使试样内部传热慢,温度梯度大,导致峰形扩大、分辨力下降。

2)试样粒度影响比较复杂。通常大颗粒热阻较大,而使试样的熔融温度和熔融热焓偏低。但是当结晶的试样研磨成细颗粒时,往往由于晶体结构的歪曲和结晶度的下降也可导致相类似的结果。对干带静电的粉状试样,由于粉末颗粒间的静电引力使粉状形成聚集体,也会引起熔融热焓变大。3)试样的几何形状在高聚物的研究中,发现试样几何形状的影响十分明显。对于高聚物,为了获得比较精确的峰温值,应该增大试样与试样盘的接触面积,减少试样的厚度并采用慢的升温速率。6.4.3DSC曲线峰面积的确定及仪器校正不管是DTA还是DSC对试样进行测定的过程中,试样发生热效应后,其导热系数、密度、比热等性质都会有变化。使曲线难以回到原来的基线,形成各种峰形。如何正确选取不同峰形的峰面积,对定量分析来说是十分重要的。DSC是动态量热技术,对DSC仪器重要的校正就是温度校正和量热校正。为了能够得到精确的数据,即使对于那些精确度相当高的DSC仪,也必须经常进行温度和量热的校核。1.峰面积的确定一般来讲,确定DSC峰界限有以下四种方法:(1)若峰前后基线在一直线上,则取基线连线作为峰底线(a)。(2)当峰前后基线不一致时,取前、后基线延长线与峰前、后沿交点的连线作为峰底线(b)。(3)当峰前后基线不一致时,也可以过峰顶作为纵坐标平行线.与峰前、后基线延长线相交,以此台阶形折线作为峰底线(c)。(4)当峰前后基线不一致时,还可以作峰前、后沿最大斜率点切线,分别交于前、后基线延长线,连结两交点组成峰底线(d)。此法是ICTA所推荐的方法。2.温度校正(横坐标校正)DSC的温度是用高纯物质的熔点或相变温度进行校核的高纯物质常用高纯铟,另外有KNO3、Sn、Pb等。1965,ICTA推荐了标定仪器的标准物质试样坩埚和支持器之间的热阻会使试样坩埚温度落后于试样坩埚支持器热电偶处的温度。这种热滞后可以通过测定高纯物质的DSC曲线的办法求出。高纯物质熔融DSC峰前沿斜率为:R0为坩埚与支持器之间的热阻试样的DSC峰温为过其峰顶作斜率与高纯金属熔融峰前沿斜率相同的斜线与峰底线交点B所对应的温度Te。3.量热校正(纵坐标的校正)用已知转变热焓的标准物质(通常用In、Sn、Pb、Zn等金属)测定出仪器常数或校正系数K。A:DSC峰面积cm2ΔH:用来校正的标准物质的转变热焓:mcal/mgS:记录纸速cm/sa:仪器的量程(mcal/s)m:质量任一试样的转变或反应焓值:选用的标准物质,其转变温度应与被测试样所测定的热效应温度范围接近,而且校正所选用的仪器及操作条件都应与试样测定时完全一致。10.4DSC的应用鉴于DSC能定量的量热、灵敏度高,应用领域很宽,涉及热效应的物理变化或化学变化过程均可采用DSC来进行测定。峰的位置、形状、峰的数目与物质的性质有关,故可用来定性的表征和鉴定物质,而峰的面积与反应热焓有关,故可以用来定量计算参与反应的物质的量或者测定热化学参数。1.玻璃化转变温度Tg的测定无定形高聚物或结晶高聚物无定形部分在升温达到它们的玻璃化转变时,被冻结的分子微布朗运动开始,因而热容变大,用DSC可测定出其热容随温度的变化而改变。1)取基线及曲线弯曲部的外延线的交点2)取曲线的拐点2.混合物和共聚物的成分检测

脆性的聚丙烯往往与聚乙烯共混或共聚增加它的柔性。因为在聚丙烯和聚乙烯共混物中它们各自保持本身的熔融特性,因此该共混物中各组分的混合比例可分别根据它们的熔融峰面积计算。

冲击实验表明,含乙烯链段少的试样抗冲击性能差。3.结晶度的测定高分子材料的许多重要物理性能是与其结晶度密切相关的。所以百分结晶度成为高聚物的特征参数之一。由于结晶度与熔融热焓值成正比,因此可利用DSC测定高聚物的百分结晶度,先根据高聚物的DSC熔融峰面积计算熔融热焓ΔHf,再按下式求出百分结晶度。ΔHf*:100%结晶度的熔融热焓ΔHf*的测定用一组已知结晶度的样品作出结晶度ΔHf图,然后外推求出100%结晶度ΔHf*.6.5热分析中的联用技术单一的热分析技术,如TG、DTA或DSC等,难以明确表征和解释物质的受热行为。如:TG只能反映物质受热过程中质量的变化,而其它性质,如热学等性质就无法得知有无变化和变化的情况。高岭土分析,单独使用TG或DTA就得不到准确的分析结果,而采用TG-DTA联用技术可获知高岭土的高温热分解机理。高岭土500-600℃脱水的高岭土980℃亚稳态高岭土1200℃γ-Al2O3Al2(SiOx)(OH)y热分析的联用技术,包括各种热分析技术本身的同时联用,如:TG-DTA,TG-DSC等。热分析与其它分析技术的联用,如:TG-MS、TG-GC、TG-IR等。ICTA将热分析联用技术分为三类:同时联用技术串接联用技术间歇联用技术(1)同时联用技术在程序控制温度下,对一个试样同时采用两种或多种分析技术,TG-DTA、TG-DSC应用最广泛,可以在程序控温下,同时得到物质在质量与焓值两方面的变化情况。TG-DTA联用主要优点:能方便区分物理变化与化学变化;便于比较、对照、相互补充可以用一个试样、一次试验同时得到TG与DTA数据,节省时间测量温度范围宽:室温~1500℃缺点:同时联用分析一般不如单一热分析灵敏,重复性也差一些。因为不可能满足TG和DTA所要求的最佳实验条件。TG、DTA技术对试样量要求不一样,TG量稍多一些好,可以得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论