




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《第9章不等式与不等式组》一、选择题1.下列不等式变形正确的是()A.由3x﹣1>2得3x>1 B.由﹣3x<6得x<﹣2C.由>0得y>7 D.由4x>3得x>2.下列各不等式中,错误的是()A.若a+b>b+c,则a>c B.若a>b,则a﹣c>b﹣cC.若ab>bc,则a>c D.若a>b,则2c+a>2c+b3.在数轴上表示不等式x≥﹣2的解集,正确的是()A. B. C. D.4.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc二、填空题6.写出一个解集为x≥﹣2的一元一次不等式:.7.已知y=2x+2,要使y≥x,则x的取值范围为.三、解答题8.已知不等式3x﹣a≤0的正整数解恰是1,2,3,求a的取值范围.9.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.x﹣7>8.10.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.3x<2x+111.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.>6.12.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.﹣4x≥3.13.某长方体形状的容器长5cm,宽3cm,高8cm.容器内原有水的高度为2cm,现准备向它继续注水,用V(单位:cm3)表示新注入水的体积,写出V的取值范围.14.若x<y,比较3x﹣7与3y﹣7的大小,并说明理由.15.长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后8m的李明需以多快的速度同时开始冲剌,才能够在张华之前到达终点?16.如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?17.有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,求正整数x,y的值.
《第9章不等式与不等式组》参考答案与试题解析一、选择题1.下列不等式变形正确的是()A.由3x﹣1>2得3x>1 B.由﹣3x<6得x<﹣2C.由>0得y>7 D.由4x>3得x>【考点】不等式的性质.【分析】根据不等式的性质进行一一判断.【解答】解:A、在不等式3x﹣1>2的两边同时加上1,不等式仍成立,即3x>3,故本选项错误;B、在不等式﹣3x<6的两边除以﹣3,不等号方向改变,即x>﹣2,故本选项错误;C、在不等式>0的两边同时乘以7,不等式仍成立,即y>0,故本选项错误;D、由4x>3的两边同时除以4,不等式仍成立,即x>,故本选项正确;故选:D.【点评】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.下列各不等式中,错误的是()A.若a+b>b+c,则a>c B.若a>b,则a﹣c>b﹣cC.若ab>bc,则a>c D.若a>b,则2c+a>2c+b【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:A、若a+b>b+c,不等式两边同时减去b,不等号的方向不变,则a>c正确;B、若a>b,不等式两边同时加上c,不等号的方向不变,则a﹣c>b﹣c正确;C、若ab>bc,不等式两边同时除以b,而b的符号不确定,当b<0时,不等号的方向改变,则a>c错误;D、若a>b,不等式两边同时加上2c,不等号的方向不变,则2c+a>2c+b正确.故选C.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.在数轴上表示不等式x≥﹣2的解集,正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法利用排除法进行解答.【解答】解:∵不等式x≥﹣2中包含等于号,∴必须用实心圆点,∴可排除A、B,∵不等式x≥﹣2中是大于等于,∴折线应向右折,∴可排除D.故选:C.【点评】本题考查的是在数轴上表示不等式解集的方法,即“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc【考点】不等式的性质.【分析】根据不等式的性质,分别将个选项分析求解即可求得答案;注意排除法在解选择题中的应用.【解答】解:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.故选B.【点评】此题考查了不等式的性质.此题比较简单,注意解此题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题6.写出一个解集为x≥﹣2的一元一次不等式:4x+8≥0.【考点】不等式的解集.【专题】开放型.【分析】写出满足题意不等式,满足解集为x≥﹣2即可.【解答】解:根据题意得:4x+8≥0,故答案为:4x+8≥0.【点评】此题考查了不等式的解集,答案不唯一,只要满足题意即可.7.已知y=2x+2,要使y≥x,则x的取值范围为x≥﹣2.【考点】解一元一次不等式.【专题】计算题.【分析】将y=2x+2代入已知不等式,求出x的范围即可.【解答】解:将y=2x+2代入y≥x,得:2x+2≥x,解得:x≥﹣2,则x的取值范围是x≥﹣2,故答案为:x≥﹣2.【点评】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.三、解答题8.已知不等式3x﹣a≤0的正整数解恰是1,2,3,求a的取值范围.【考点】一元一次不等式的整数解.【分析】先解不等式,再画出数轴即可直观解答.【解答】解:3x﹣a≤0,移项得,3x≤a,系数化为1得,x≤.∵不等式3x﹣a≤0的正整数解恰是1,2,3,∴3≤x<4,∴3≤<4时,即9≤a<12时,不等式3x﹣a≤0的正整数解恰是1,2,3.故a的取值范围是9≤a<12.【点评】此题是一道根据整数解逆推不等式常数项取值范围的题目,借助图形可以直观的解答.9.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.x﹣7>8.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】移项、合并同类项即可求解.【解答】解:移项,得:x>8+7,合并同类项,得:x>15.将解集在数轴上表示出来为:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.3x<2x+1【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】移项、合并同类项即可求解.【解答】解:移项,得:3x﹣2x<1,合并同类项,得:x<1.将解集在数轴上表示出来为:.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.>6.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】系数化成1即可求解.【解答】解:系数化为1得:x>9.将解集在数轴上表示出来为:.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.﹣4x≥3.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】计算题.【分析】将x系数化为1,求出不等式的解集,表示在数轴上即可.【解答】解:﹣4x≥3,解得:x≤﹣,表示在数轴上,如图所示:【点评】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.某长方体形状的容器长5cm,宽3cm,高8cm.容器内原有水的高度为2cm,现准备向它继续注水,用V(单位:cm3)表示新注入水的体积,写出V的取值范围.【考点】一元一次不等式的应用.【专题】计算题.【分析】根据水的总体积不能超过容器的总体积.列出不等式组求解.【解答】解:根据题意列出不等式组:,解得:0≤v≤90.故V的取值范围是0≤v≤90.【点评】考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式组.14.若x<y,比较3x﹣7与3y﹣7的大小,并说明理由.【考点】不等式的性质.【分析】根据不等式的性质进行解答.【解答】解:3x﹣7<3y﹣7.理由如下:在不等式x<y的两边同时乘以3,不等式仍成立,即3x<3y,在不等式的两边同时减去7,不等式仍成立,即3x﹣7<3y﹣7.【点评】本题考查了不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.15.长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后8m的李明需以多快的速度同时开始冲剌,才能够在张华之前到达终点?【考点】一元一次不等式的应用.【专题】行程问题.【分析】设这时李明需以x米/秒的速度进行以后的冲刺,根据离终点100米时,在张华身后8m的李明在张华之前到达终点,列不等式求解即可.【解答】解:设这时李明需以x米/秒的速度进行以后的冲刺,依题意有x>100+8,解得x>.答:在他身后8m的李明需以4.32米/秒的速度同时开始冲剌,才能够在张华之前到达终点.【点评】本题考查一元一次不等式的应用,关键是设出速度,以路程差作为等量关系列出不等式.16.如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?【考点】一元一次不等式的整数解.【专题】计算题.【分析】表示出不等式的解集,根据正整数解确定出k的范围即可.【解答】解:不等式变形得:x<k+6,∵不等式的正整数解为1、2、3,∴3<k+6≤4,解得:﹣3<k≤﹣2.【点评】此题考查了一元一次不等式的整数解,列出关于k的不等式是解本题的关键.17.有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,求正整数x,y的值.【考点】一元一次不等式组的应用.【专题】计算题.【分析】根据金属棒的长度是40mm,则可以得到7x+9y≤40,再根据x,y都是正整数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购物卡变现协议合同书
- 财务退休返聘合同协议
- 豪车自驾租赁合同协议
- 购买餐饮菜品合同协议
- 订购合同协议标准版
- 2025年大学化学逆向学习试题及答案
- 《第03节 探究外力做功与物体动能变化的关系》教学反思
- 2025年经济学专业硕士研究生入学考试试卷及答案
- 2025年劳动合同法知识考试试卷及答案
- 2022年全国中学生数学奥林匹克竞赛(预赛)暨2022年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准
- 《BACnet基础教程》课件
- 环境污染举报信范文
- 《基于PLC的包装机控制系统的设计与实现》10000字(论文)
- 电力工程勘测的基本知识
- 2025年成都地铁运营有限公司招聘笔试参考题库含答案解析
- 《艺术作品欣赏》课件
- 体育赛事版权保护与监管-洞察分析
- 自动分类垃圾桶创新
- 2025年南京证券招聘笔试参考题库含答案解析
- 02S515排水检查井-标准图集
- (2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷-新课标Ⅰ卷(含部分解析)
评论
0/150
提交评论