




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,分别是三个内角,,的对边,,则()A. B. C. D.2.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③3.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为()A. B. C. D.4.已知集合,则()A. B. C. D.5.已知集合,则()A. B. C. D.6.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.7.复数,是虚数单位,则下列结论正确的是A. B.的共轭复数为C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限8.已知曲线且过定点,若且,则的最小值为().A. B.9 C.5 D.9.已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为()A. B. C. D.10.“学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.43211.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.212.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同二、填空题:本题共4小题,每小题5分,共20分。13.若满足约束条件,则的最大值为__________.14.抛物线上到其焦点距离为5的点有_______个.15.(5分)已知,且,则的值是____________.16.函数的图像如图所示,则该函数的最小正周期为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:分数段[50,60)[60,70)[70,80)[80,90)[90,100]人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.参考公式及数据:,其中.18.(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.19.(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.20.(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,,21.(12分)设都是正数,且,.求证:.22.(10分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
原式由正弦定理化简得,由于,可求的值.【详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【点睛】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.2.C【解析】
根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.3.B【解析】
直接代入检验,排除其中三个即可.【详解】由题意,排除D,,排除A,C.同时B也满足,,,故选:B.【点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解.4.A【解析】
考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.5.B【解析】
计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.6.A【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.7.D【解析】
利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.8.A【解析】
根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.9.B【解析】由题意可得c=,设右焦点为F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以椭圆的方程为.故选B.点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在.10.C【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.11.D【解析】
如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.12.A【解析】
设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.二、填空题:本题共4小题,每小题5分,共20分。13.4【解析】
作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.14.2【解析】
设符合条件的点,由抛物线的定义可得,即可求解.【详解】设符合条件的点,则,所以符合条件的点有2个.故答案为:2【点睛】本题考查抛物线的定义的应用,考查抛物线的焦半径.15.【解析】
由于,且,则,得,则.16.【解析】
根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可.【详解】解:由,得,,,则,,,即,则函数的最小正周期,故答案为:8【点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)【解析】
(1)补充完整的列联表如下:合格不合格合计高一新生121426非高一新生18624合计302050则的观测值,所以有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关.(2)抽取的5名学生中竞赛成绩合格的有名学生,记为,竞赛成绩不合格的有名学生,记为,从这5名学生中随机抽取2名学生的基本事件有:,共10种,这2名学生竞赛成绩都合格的基本事件有:,共3种,所以这2名学生竞赛成绩都合格的概率为.18.(Ⅰ);(Ⅱ)面积的最小值为9,.【解析】
(Ⅰ)由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得标准方程;(Ⅱ)设直线方程为,设,把直线方程代入抛物线方程,化为的一元二次方程,由韦达定理得,由弦长公式得,同理求得点的横坐标,于是可得,将面积表示为参数的函数,利用导数可求得最大值.【详解】(Ⅰ)∵椭圆:,长轴的右端点与抛物线:的焦点重合,∴,又∵椭圆的离心率是,∴,,∴椭圆的标准方程为.(Ⅱ)过点的直线的方程设为,设,,联立得,∴,,∴.过且与直线垂直的直线设为,联立得,∴,故,∴,面积.令,则,,令,则,即时,面积最小,即当时,面积的最小值为9,此时直线的方程为.【点睛】本题考查椭圆方程的求解,抛物线中弦长的求解,涉及三角形面积范围问题,利用导数求函数的最值问题,属综合困难题.19.(1)见解析(2)见解析【解析】
(1)求出,分别以当,,时,结合函数的单调性和最值判断零点的个数.(2)令,结合导数求出;同理可求出满足,从而可得,进而证明.【详解】解析:(1),,当时,,单调递减,,,此时有1个零点;当时,无零点;当时,由得,由得,∴在单调递减,在单调递增,∴在处取得最小值,若,则,此时没有零点;若,则,此时有1个零点;若,则,,求导易得,此时在,上各有1个零点.综上可得时,没有零点,或时,有1个零点,时,有2个零点.(2)令,则,当时,;当时,,∴.令,则,当时,,当时,,∴,∴,,∴,即.【点睛】本题考查了导数判断函数零点问题,考查了运用导数证明不等式问题,考查了分类的数学思想.本题的难点在于第二问不等式的证明中,合理设出函数,通过比较最值证明.20.(1)(2)详见解析【解析】
由题意,根据平均数公式求得,再根据,参照数据求解.由题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民族民间体育活动在线平台企业制定与实施新质生产力项目商业计划书
- 平台经济发展的策略及实施路径
- 2025-2030牙间刷行业市场现状供需分析及投资评估规划分析研究报告
- 健身房运营管理工作计划
- 2025-2030洗涤用品产业行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030汽车内饰产业行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030毛衣市场投资前景分析及供需格局研究研究报告
- 2025-2030摩托车保险行业市场运行态势分析及前景趋势与投资研究报告
- 2025-2030房地产服务行业市场现状供需分析及投资评估规划分析研究报告
- 成都市农业科技园区股权投资与产业发展协议
- 物业管理服务交接方案
- 2025-2030中国管式炉行业市场发展趋势与前景展望战略分析研究报告
- 2025年重庆三峰环境产业集团有限公司招聘笔试参考题库含答案解析
- 组织学与胚胎学知到课后答案智慧树章节测试答案2025年春浙江中医药大学
- 绿化工程投标方案(技术标)
- 民兵反恐维稳培训
- 国家教育部卓越工程师教育培养计划高校学科专业名单(第一二三批)
- 2024年全国中小学生《学游泳、防溺水、懂自救》教育知识试题库与答案
- 《溺水急救方法》课件
- 药品基础知识培训课件
- 【MOOC】分子生物学-华中农业大学 中国大学慕课MOOC答案
评论
0/150
提交评论