




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3章矩阵的标准形
3.1矩阵的相似对角形
3.2矩阵的Jordan标准形
3.3哈密顿-开莱定理及矩阵的最小多项式
3.4多项式矩阵与Smith标准形
3.5多项式矩阵的互质性和既约性
3.6有理分式矩阵的标准形及其仿分式分解
3.7*
系统的传递性函数矩阵
3.8
舒尔定理及矩阵的QR分解3.9
矩阵的奇异值分解本章主要讨论数字矩阵、多项式矩阵、有理分式矩阵的标准形及矩阵的若干分解形式,这是矩阵理论中一个内容广泛而又十分重要的部分,在许多领域中都有重要的应用.并且介绍矩阵的QR分解、奇异值分解等概念.3.1矩阵的相似对角形线性变换的特征值与特征向量的概念由前面的例子可以看出,并非每个矩阵A都可以相似对角形矩阵,那么当矩阵A不能和对角形矩阵相似时,能否找到一个构造比较简单的分块对角矩阵与它们相似呢?当我们在复数域C内考虑这个问题时,这样的矩阵确实存在,这就是约当(Jordan)形矩阵,称为矩阵A的Jordan标准形.在矩阵分析及其应用中,矩阵的Jordan标准形是重要的工具,但其理论推导十分繁复,在这里只作扼要介绍.3.2矩阵的Jordan标准形在3.1节中给出了矩阵的特征多项式,本节将进一步给出特征多项式的性质,其中最重要的就是哈密顿-开莱定理;还将讨论另一个重要的多项式,即矩阵的最小多项式.所得到的结果有重要的理论及应用价值.3.3
哈密顿-开莱定理及矩阵的最小多项式3.4多项式矩阵与Smith标准形多项式矩阵的初等变换概念
Smith标准形概念行列式因子的重要性在于它在初等变换下是不变的.不变因子的概念
3.5
多项式矩阵的互质性和既约性现转移到多项式矩阵的互质性问题.最后讨论多项式矩阵的既约性问题3.6
有理分式矩阵的标准形及其仿分式分解3.8
舒尔定理及矩阵的QR分解以下转到另一重要定理,它为计算特征值的数值方法提供了重要理论依据.3.9
矩阵的奇异值分解矩阵的奇异值分解在最优化问题、特征值问题、最小二乘法问题、广义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玩具市场趋势预测与分析考核试卷
- 游戏虚拟现实技术与应用考核试卷
- 纺织鞋材防水透气性能研究考核试卷
- 淀粉酶在淀粉加工中的应用考核试卷
- 篷布行业技术创新策略考核试卷
- 2025年中考历史二模试卷(河南卷)含答案解析
- 2025授权财务合同书
- 2025年商用办公室租赁合同范本
- 2025典当的借款合同
- 二零二五版房屋出租合同书范例租赁合同书
- 重症新生儿护理课件
- 青少年科技创新比赛深度分析
- 危险化学品企业设备完整性 第2部分 技术实施指南 编制说明
- GB/T 4437.1-2023铝及铝合金热挤压管第1部分:无缝圆管
- 奢侈品买卖协议书范本
- 欧洲文化智慧树知到课后章节答案2023年下宁波大学
- 《新大学英语·跨文化交际阅读》Values Behind Sayings
- 风电项目开发前期工作流程
- 劳动保障部《关于劳动合同制职工工龄计算问题的复函》
- 国开2023春计算机组网技术形考任务二参考答案
- 200条健康小常识
评论
0/150
提交评论