




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若※是新规定的某种运算符号,设a※b=b2-a,则-2※x=6中x的值()A.4 B.8 C.2 D.-22.解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=43.如图,在中,,的垂直平分线交于点,垂足为.如果,则的长为()A.2 B.3 C.4 D.64.关于的方程有实数根,则满足()A. B.且 C.且 D.5.的倒数是()A. B.3 C. D.6.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2π B.16+4π C.16+8π D.16+12π7.如果代数式有意义,则实数x的取值范围是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥38.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A. B. C. D.9.下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.410.下列图形中,属于中心对称图形的是()A. B.C. D.11.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×10712.如图所示的几何体是由4个大小相同的小立方体搭成,其俯视图是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)14.如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:_____.15.已知x1,x2是方程x2+6x+3=0的两实数根,则的值为_____.16.写出一个比大且比小的有理数:______.17.平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是_____.18.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.如图,在平面直角坐标系中,点的坐标为,沿轴向右平移后得到,点的对应点是直线上一点,则点与其对应点间的距离为__________.B.比较__________的大小.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)20.(6分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.21.(6分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?22.(8分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是;(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.23.(8分)关于x的一元二次方程ax2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.24.(10分)用你发现的规律解答下列问题.┅┅计算.探究.(用含有的式子表示)若的值为,求的值.25.(10分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:______;画出绕点B逆时针旋转的图形;在中,点C所形成的路径的长度为______.26.(12分)解不等式组:,并求出该不等式组所有整数解的和.27.(12分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】解:由题意得:,∴,∴x=±1.故选C.2、B【解析】
方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.3、C【解析】
先利用垂直平分线的性质证明BE=CE=8,再在Rt△BED中利用30°角的性质即可求解ED.【详解】解:因为垂直平分,所以,在中,,则;故选:C.【点睛】本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.4、A【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.5、A【解析】
解:的倒数是.故选A.【点睛】本题考查倒数,掌握概念正确计算是解题关键.6、D【解析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.7、C【解析】
根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.8、D【解析】根据“左加右减、上加下减”的原则,将抛物线向左平移1个单位所得直线解析式为:;再向下平移3个单位为:.故选D.9、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B.考点:简单几何体的三视图10、B【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.故选B.【点睛】本题考查了轴对称与中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.11、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7490000=7.49×106.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2.9【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.14、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由△OCD得到△AOB的过程.详解:△ABC向上平移5个单位,再沿y轴对折,得到△DEF,故答案为:平移,轴对称.点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.15、1.【解析】试题分析:∵,是方程的两实数根,∴由韦达定理,知,,∴===1,即的值是1.故答案为1.考点:根与系数的关系.16、2【解析】
直接利用接近和的数据得出符合题意的答案.【详解】解:到之间可以为:2(答案不唯一),故答案为:2(答案不唯一).【点睛】此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.17、0.5<m<3【解析】
根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.【详解】∵点P(m−3,1−2m)在第三象限,∴,解得:0.5<m<3.故答案为:0.5<m<3.【点睛】本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.18、5>【解析】
A:根据平移的性质得到OA′=OA,OO′=BB′,根据点A′在直线求出A′的横坐标,进而求出OO′的长度,最后得到BB′的长度;B:根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较.【详解】A:由平移的性质可知,OA′=OA=4,OO′=BB′.因为点A′在直线上,将y=4代入,得到x=5.所以OO′=5,又因为OO′=BB′,所以点B与其对应点B′间的距离为5.故答案为5.B:sin53°=cos(90°-53°)=cos37°,tan37°=,根据正切函数与余弦函数图像可知,tan37°>tan30°,cos37°>cos45°,即tan37°>,cos37°<,又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.【点睛】本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.【解析】
(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD,CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CH⊥AB于点H,如图所示,∵BC=12km,∠B=30°,∴km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DM⊥AB于点M,如图所示,∵桥DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,即现在从A地到达B地可比原来少走的路程是4.1km.【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.20、(1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).【解析】
(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.21、(4)60;(4)作图见试题解析;(4)4.【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.试题解析:(4)被调查的学生人数为:44÷40%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400×=4(人).考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.22、(1);(2)y=x2;(3)点Q到x轴的最短距离为1.【解析】
(1)先判断出m(n﹣1)=6,进而得出结论;(2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.【详解】(1)设m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是故答案为:;(2)∴点P(x,y)到点A(0,1),∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,∴x2+(y﹣1)2=(y+1)2,∴(3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),∴线段MN的中点为Q的纵坐标为∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴点Q到x轴的最短距离为1.【点睛】此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键.23、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.【解析】
分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.24、解:(1);(2);(3)n=17.【解析】
(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.【详解】(1)原式=1−+−+−+−+−=1−=.故答案为;(2)原式=1−+−+−+…+−=1−=故答案为;(3)+++…+=(1−+−+−+…+−)=(1−)==解得:n=17.考点:规律题.25、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3).【解析】
(1)△ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到△DEF;按照旋转中心、旋转角度以及旋转方向,即可得到△ABC绕点B逆时针旋转的图形△;依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可.【详解】解:(1)答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社会政策的国际比较试题及答案
- 反对种族歧视的公共政策分析与实践试题及答案
- 政治参与公平性与社会治理的考核试题及答案
- 公共政策应对社会需求变化的分析试题及答案
- 网络工程师业务能力提升试题及答案
- 2025年深海矿产勘探设备研发进展与应用案例分析报告
- 文化因素对公共政策的影响研究试题及答案
- 考前总结信息系统项目管理师试题及答案
- 行政管理与公共政策关系试题及答案
- 安全辐射管理考试题及答案
- 新版水利工程监理日志
- 音乐课堂基础知识教学
- 生产月度工作总结汇报
- 他达拉非临床应用
- 中职高教版(2023)语文职业模块-第一单元1.4闪亮的坐标,劳模王进喜【课件】
- 冠脉介入对比剂使用专家共识课件
- (云南卷)2025年中考地理第一次模拟考试(A4考试版)
- 【MOOC期末】《模拟电子线路A》(南京邮电大学)期末中国大学慕课答案
- 2025年中国融通农发社会招聘笔试参考题库含答案解析
- 矛盾普遍性与特殊性的辩证关系
- 第五课+弘扬劳动精神、劳模精神、工匠精神【中职专用】中职思想政治《职业道德与法治》高效课堂(高教版2023·基础模块)
评论
0/150
提交评论