




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区柳州市八江中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某几何体的三视图如图所示,则该几何体的体积是()A.16 B.20 C.52 D.60参考答案:B【考点】由三视图求面积、体积.【分析】由三视图得到几何体为三棱柱与三棱锥的组合体,根据图中数据,计算体积即可.【解答】解:由题意,几何体为三棱柱与三棱锥的组合体,如图体积为=20;故选B.【点评】本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体,利用三视图的数据求体积.2.已知复数(为虚数单位),则的共轭复数(
)A.
B.
C.
D.参考答案:D3.若a,b∈R,且a>b,则下列不等式中恒成立的是(
)(A) (B) (C) (D)参考答案:B略4.是虚数单位,若,则的值是(
)
A、
B、
C、
D、参考答案:C5.已知,实数满足,若实数是函数的一个零点,那么下列不等式中不可能成立的是(
)A. B. C. D.参考答案:D6.(
)A.
B.
C.
D.参考答案:B略7.已知向量=(2,4),=(﹣1,1),则2﹣=()A.(3,7) B.(3,9) C.(5,7) D.(5,9)参考答案:C【考点】平面向量的坐标运算.【专题】平面向量及应用.【分析】直接利用向量的坐标运算求解即可.【解答】解:向量=(2,4),=(﹣1,1),则2﹣=2(2,4)﹣(﹣1,1)=(5,7).故选:C.【点评】本题考查向量的坐标运算,考查计算能力.8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A. B. C. D.参考答案:A【考点】等可能事件的概率.【分析】从5个小球中选两个有C52种方法,列举出取出的小球标注的数字之和为3或6的有{1,2},{1,5},{2,4}共3种,根据古典概型公式,代入数据,求出结果.本题也可以不用组合数而只通过列举得到事件总数和满足条件的事件数.【解答】解:随机取出2个小球得到的结果数有C52=种取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,∴P=,故选A9.如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是(
) A. B. C. D.参考答案:B考点:简单空间图形的三视图.专题:常规题型.分析:由题意可以判断出两球在正方体的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住,排除A;得到正确选项.解答: 解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被全挡住,由于两球不等,所以排除A;B正确;故选B点评:本题是基础题,考查几何体的三视图知识,本题的解答采用排除法,无限思想的应用,考查空间想象能力.10.位于平面直角坐标系原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向是向上或向下,并且向上移动的概率为,则质点P移动4次后位于点(0,2)的概率是()A. B. C. D.参考答案:D【考点】几何概型.【专题】计算题;方程思想;综合法;概率与统计.【分析】根据题意,分析可得质点P移动4次后位于点(0,2),其中向上移动3次,向右下移动1次,进而借助排列、组合知识,由相互独立事件的概率公式,计算可得答案.【解答】解:根据题意,质点P移动4次后位于点(0,2),其中向上移动3次,向右下移动1次;则其概率为C41×()1×()3=,故选:D.【点评】本题考查相互独立事件的概率的计算,其难点在于分析质点P移动4次后位于点(0,2),其中向上移动3次,向右下移动1次的情况,这里要借助排列组合的知识.二、填空题:本大题共7小题,每小题4分,共28分11.一个人随机的将编号为的四个小球放入编号为的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了,记放对的个数为随机变量,则的期望E=
.参考答案:112.已知函数若实数m,则函数有(
)个零点.参考答案:3略13.设数列{an}的各项都是正数,且对任意n∈N*,都有4Sn=an2+2an,其中Sn为数列{an}的前n项和,则数列{an}的通项公式为an=.参考答案:2n【考点】数列递推式.【分析】当n=1时,得a1=2;当n≥2时,由4an=4Sn﹣4Sn﹣1,得an﹣an﹣1=2,从而可得结论.【解答】解:当n=1时,由4S1=a12+2a1,a1>0,得a1=2,当n≥2时,由4an=4Sn﹣4Sn﹣1=(an2+2an)﹣(an﹣12+2an﹣1),得(an+an﹣1)(an﹣an﹣1﹣2)=0,因为an+an﹣1>0,所以an﹣an﹣1=2,故an=2+(n﹣1)×2=2n.故答案为:2n.14.(01全国卷文)()10的二项展开式中x3的系数为
参考答案:答案:15
15.如图,是边长为的正方形,动点在以为直径的圆弧上,则的取值范围是
▲
;
参考答案:16.设,,…,是1,2,…,的一个排列,把排在的左边且比小的数的个数称为的顺序数().如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在由1、2、3、4、5、6、7、8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为_________
___(结果用数字表示).参考答案:144略17.在区间[-2,3]上任取一个数a,则函数有极值的概率为
.参考答案:2/5略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)选修4—4:坐标系与参数方程。在直角坐标系xoy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的方程为,直线l的极坐标方程为-2=0。(I)写出C的参数方程和直线l的直角坐标方程;(II)设l与C的交点为P1,P2,求过线段P1P2的中点且与l垂直的直线的极坐标方程。参考答案:19.(12分)已知斜率为k的直线l与椭圆C:交于A,B两点,线段AB的中点为.(1)证明:k<;(2)设F为C的右焦点,P为C上一点,且.证明:||,||,||成等差数列,并求该数列的公差.参考答案:解:(1)设,则.两式相减,并由得.由题设知,于是.①由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.
20.已知椭圆+=1(a>b>0)的左、右焦点为F1、F2,点A(2,)在椭圆上,且AF2与x轴垂直.(1)求椭圆的方程;(2)过A作直线与椭圆交于另外一点B,求△AOB面积的最大值.参考答案:【考点】椭圆的简单性质.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(1)有已知:c=2,解得a=,b2=4,从而写出方程.(2)分AB斜率不存在或斜率存在两种情况讨论.【解答】解:(1)有已知:c=2,∴a=,b2=4,故椭圆方程为;
(2)当AB斜率不存在时:,当AB斜率存在时:设其方程为:,由得,由已知:△=16﹣8(2k2+1)=8,即:,|AB|=,
O到直线AB的距离:d=,∴S△AOB==,∴2k2+1∈[1,2)∪(2,+∞),∴,∴此时,综上所求:当AB斜率不存在或斜率存在时:△AOB面积取最大值为.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,考查了学生综合运用所学知识,创造性地解决问题的能力,解题时要认真审题,仔细解答.21..本小题满分10分)选修4—4;坐标系与参数方程已知曲线的参数方程是(为参数)与直线的参数方程是(为参数)有一个公共点在轴上.以坐标原点为极点,轴的正半轴为极轴建立坐标系.(Ⅰ)求曲线普通方程;(Ⅱ)若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年杭州市医保考试题及答案
- 2025年内分泌科常见代谢疾病诊断考试题答案及解析
- Unit6 Reading(2)说课稿 - 2025-2026学年牛津译林版七年级英语下册
- 排水管网清淤疏通专项实施方案
- 天然气转化制氢技术方案
- 2025年神经病学临床鉴定能力评估答案及解析
- 2025年呼吸内科疾病治疗综合考核答案及解析
- 钢结构吊装施工技术方案
- 血液系统疾病病人的护理试题及答案
- 2025年微生物学“细菌耐药性相关基因的检测方法”考试卷答案及解析
- 4人合股合同协议书范本
- 2023-2025年高考生物试题分类汇编:孟德尔两大遗传定律原卷版
- 2025年军考政治时事政治热点试题题库含答案
- 2025年村医笔试重点题库
- 2025-2026学年人音版(简谱)(2024)初中音乐七年级上册教学计划及进度表
- 养生艾灸直播课件
- 2025年徐州市中考语文试题卷(含答案及解析)
- 云南省2025年校长职级制考试题(含答案)
- 幼儿园美术教师个人工作计划范文
- 2025年中国电信福建公司春季招聘80人笔试参考题库附带答案详解
- 《幼儿园开学第一课》课件
评论
0/150
提交评论