




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省清远市鱼湾中学2023年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,tanA,tanB,tanC依次成等差数列,则B的取值范围是()A.(0,]∪(,] B.(0,]∪(,]C.[)
D.[,)参考答案:D【考点】8F:等差数列的性质;GH:同角三角函数基本关系的运用;GR:两角和与差的正切函数.【分析】由已知先求出2tanB=tanA+tanC>0,tanAtanC=3.再由(2tanB)2=(tanA+tanC)2=tan2A+tan2C+2tanAtanC≥4tanAtanC=12,求出,从而得到B的取值范围.【解答】解:由已知得2tanB=tanA+tanC>0(显然tanB≠0,若tanB<0,因为tanA>0且tanC>0,tanA+tanC>0,这与tanB<0矛盾),又tanB=﹣tan(A+C)=,所以tanAtanC=3.又(2tanB)2=(tanA+tanC)2=tan2A+tan2C+2tanAtanC≥4tanAtanC=12,因此tan2B≥3,又tanB>0,所以,,即B的取值范围是[),故选D.【点评】本题借助等差数列的性质考查三解函数知识,体现了出题者的智慧,解题时要注意三角函数公式的灵活运用.2.下列四个结论中,正确的是(
)
A.
B.
C.
D.参考答案:B略3.如右图为一个几何体的三视图,其中俯视图为正三角形,,,
则该几何体的表面积为
.
.
.
.参考答案:C略4.要得到函数的图象,只要将函数的图象()(A)向左平移个单位
(B)向右平移个单位
(C)向右平移个单位
(D)向左平移个单位参考答案:D略5.函数的定义域为(
).A.
B.
D.且参考答案:C略6.已知点在直线上,则的最小值为A. B. C. D.
参考答案:A略7.已知函数,(a>0),若,,使得f(x1)=g(x2),则实数a的取值范围是(
)(A) (B) (C) (D)参考答案:D8.设a,b,c为三个不同的实数,记集合A=,B=,若集合A,B中元素个数都只有一个,则b+c=()A.1 B.0 C.﹣1 D.﹣2参考答案:C【考点】集合中元素个数的最值.【分析】设x12+ax1+1=0,x12+bx1+c=0,得x1=,同理,由x22+x2+a=0,x22+cx2+b=0,得x2=(c≠1),再根据韦达定理即可求解.【解答】解:设x12+ax1+1=0,x12+bx1+c=0,两式相减,得(a﹣b)x1+1﹣c=0,解得x1=,同理,由x22+x2+a=0,x22+cx2+b=0,得x2=(c≠1),∵x2=,∴是第一个方程的根,∵x1与是方程x12+ax1+1=0的两根,∴x2是方程x2+ax+1=0和x2+x+a=0的公共根,因此两式相减有(a﹣1)(x2﹣1)=0,当a=1时,这两个方程无实根,故x2=1,从而x1=1,于是a=﹣2,b+c=﹣1,故选:C.9.已知函数在上是减函数,则的取值范围是
(
)A.
B.
C.
D.参考答案:B10.与y=|x|为同一函数的是(
)A. B.C. D.参考答案:D【考点】判断两个函数是否为同一函数.【专题】阅读型.【分析】题目给出了一个分段函数,把该函数分段写出后对四个选项逐一核对判断.【解答】解:函数y=|x|=,而函数的定义域为[0,+∞),与已知函数定义域不同;的定义域是{x|x>0,且x≠1},与已知函数定义域不同;的定义域为{x|x≠0},与已知函数定义域不同;,所以该函数与已知函数为同一函数.故选D.【点评】题目考察了判断函数是否为同一函数的方法,判断两个函数是否为同一函数,就看它们的定义域是否相同,对应关系是否一致,属基础题.二、填空题:本大题共7小题,每小题4分,共28分11.正六棱柱ABCDEF﹣A1B1C1D1E1F1的底面边长为,侧棱长为1,则动点从A沿表面移动到点D1时的最短的路程是.参考答案:【考点】多面体和旋转体表面上的最短距离问题.【专题】转化思想;分类法;空间位置关系与距离.【分析】根据题意,画出图形,结合图形得出从A点沿表面到D1的路程是多少,求出即可.【解答】解:将所给的正六棱柱按图1部分展开,则AD′1==,AD1==,∵AD′1<AD1,∴从A点沿正侧面和上底面到D1的路程最短,为.故答案为:.【点评】本题考查了几何体的展开图,以及两点之间线段最短的应用问题,立体几何两点间的最短距离时,通常把立体图形展开成平面图形,转化成平面图形两点间的距离问题来求解,是基础题目.12.已知点在直线的两侧,则的取值范围为
参考答案:(-5,3)13.(3分)已知幂函数y=f(x)的图象过点(,),则f(x)=
.参考答案:考点: 幂函数的概念、解析式、定义域、值域.专题: 函数的性质及应用.分析: 设出幂函数y=f(x)的解析式,根据图象过点(,),求出f(x)的解析式.解答: 设幂函数y=f(x)=xa,其图象过点(,),∴=;∴a=,∴f(x)=.故答案为:.点评: 本题考查了用图象上的点求幂函数解析式的问题,是基础题目.14.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____参考答案:54【分析】根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为54【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。15.设定义在上的函数同时满足以下三个条件:①;②;③当时,,则
。参考答案:16.已知的最小值是5,则z的最大值是______.参考答案:10由,则,因为的最小值为5,所以,做出不等式对应的可行域,由图象可知当直线经过点C时,直线的截距最小,所以直线CD的直线方程为,由,解得,代入直线得即直线方程为,平移直线,当直线经过点D时,直线的截距最大,此时有最大值,由,得,即D(3,1),代入直线得。17.已知幂函数的图象过点,则f(x)=
。参考答案:∵幂函数y=f(x)=xα的图象过点∴故答案为
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知向量,.(1)若与平行,求k的值;(2)若与垂直,求k的值.参考答案:(1);(2)【分析】通过坐标表示出和,根据向量平行和垂直的性质可构造关于的方程,求解得到结果.【详解】由题意得:,(1)
(2)
【点睛】本题考查利用向量平行和垂直的性质求解参数的问题,主要利用向量的坐标运算来求解,属于基础题.19.已知集合A={x|x≤5},B={x|3<x≤7},求:(1)A∩B;(2)A∪(CRB).参考答案:【考点】交、并、补集的混合运算.【分析】(1)根据交集的定义,A∩B表示既属于集合A又属于集合B的元素组成的集合,根据集合A={x|x≤5},B={x|3<x≤7},求出A与B的交集即可;(2)先根据全集R和集合B求出集合B的补集,然后求出A补集与A的并集即可.【解答】解:(1)A∩B={x|x≤5}∩{x|3<x≤7}={x|3<x≤5}…(2)CRB={x|x≤3或x>7}…所以A∪(CRB)={x|x≤5}∪{x|x≤3或x>7}={x|x≤5或x>7}…20.如图,在三棱椎P﹣ABC中,D,E,F分别是棱PC、AC、AB的中点,且PA⊥面ABC.(1)求证:PA∥面DEF;(2)求证:面BDE⊥面ABC.参考答案:【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)由线面平行的判定定理可知,只须证PA与平面DEF内的某一条直线平行即可,由已知及图形可知应选择DE,由三角形的中位线的性质易知:DE∥PA,从而问题得证;(2)由面面垂直的判定定理可知,只须证两平中的某一直线与另一个平面垂直即可,注意题中已知了线段的长度,那就要注意利用勾股定理的逆定理来证明直线与直线的垂直;通过观察可知:应选择证DE垂直平面ABC较好,由(1)可知:DE⊥AC,再就只须证DE⊥EF即可;这样就能得到DE⊥平面ABC,又DE?平面BDE,从面而有平面BDE⊥平面ABC.【解答】证明:(1)因为D,E分别为PC,AC的中点,所以DE∥PA.又因为PA?平面DEF,DE?平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别人棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90.,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC?平面ABC,EF?平面ABC,所以DE⊥平面ABC.又DE?平面BDE,所以平面BDE⊥平面ABC.【点评】本题考查线面平行的判定,考查平面与平面垂直的判定,考查学生分析解决问题的能力,属于中档题.21.已知,若集合P中恰有3个元素,求。参考答案:。22.(1)计算:;(2)解方程:.参考答案:【考点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 启文小学亲子活动方案
- 吸毒人员创业活动方案
- 重视常规健康生活
- 县城公司年会活动方案
- 南京元旦活动方案
- 吸烟宣讲活动方案
- 口才课程回馈活动方案
- 同城过年活动策划方案
- 厂区跑步活动方案
- 厂家优惠活动方案
- 国开《学前儿童语言教育活动指导》形考1-4试题及答案
- 海康2023综合安防工程师认证试题答案HCA
- 浊度仪使用说明书
- GB/T 14404-2011剪板机精度
- GB/T 14294-1993组合式空调机组
- GA 1517-2018金银珠宝营业场所安全防范要求
- 提高痰留取成功率PDCA课件
- 组合导航与融合导航解析课件
- 伊金霍洛旗事业编招聘考试《行测》历年真题汇总及答案解析精选V
- 深基坑支护工程验收表
- 颅脑CT影像课件
评论
0/150
提交评论