




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.2.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,3.已知函数,若,则等于()A.-3 B.-1 C.3 D.04.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.35.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.6.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为()A. B. C. D.7.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为8.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为()A. B. C. D.9.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.10.若,,,则()A. B.C. D.11.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.12.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,若,则数列的前n项和______.14.若在上单调递减,则的取值范围是_______15.若,则__________.16.动点到直线的距离和他到点距离相等,直线过且交点的轨迹于两点,则以为直径的圆必过_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.18.(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.19.(12分)已知等比数列,其公比,且满足,和的等差中项是1.(Ⅰ)求数列的通项公式;(Ⅱ)若,是数列的前项和,求使成立的正整数的值.20.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.附:(1)相关系数(2),,,.21.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.22.(10分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.2、D【解析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果3、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.4、B【解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.5、B【解析】
由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.6、A【解析】
联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,·=0,因为,,由平面向量垂直的坐标表示可得,,因为,所以a2-c2=ac,两边同时除以可得,,解得e=或(舍去),所以该椭圆的离心率为.故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.7、C【解析】
根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.8、A【解析】
由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【详解】如图,取BC中点G,连接AG,DG,则,,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为.故选A.【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.9、B【解析】
由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.10、C【解析】
利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.11、D【解析】
设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法12、C【解析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【详解】由题为等差数列,∴,∴,∴,∴,故答案为【点睛】本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.14、【解析】
由题意可得导数在恒成立,解出即可.【详解】解:由题意,,当时,显然,符合题意;当时,在恒成立,∴,∴,故答案为:.【点睛】本题主要考查利用导数研究函数的单调性,属于中档题.15、【解析】
因为,由二倍角公式得到,故得到.故答案为.16、【解析】
利用动点到直线的距离和他到点距离相等,,可知动点的轨迹是以为焦点的抛物线,从而可求曲线的方程,将,代入,利用韦达定理,可得,从而可知以为直径的圆经过原点O.【详解】设点,由题意可得,,,可得,设直线的方程为,代入抛物线可得,,,,以AB为直径的圆经过原点.故答案为:(0,0)【点睛】本题考查了抛物线的定义,考查了直线和抛物线的交汇问题,同时考查了方程的思想和韦达定理,考查了运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析(3)存在唯一的等差数列,其通项公式为,满足题设【解析】
(1)由,可得公比,即得;(2)由(1)和可得数列的递推公式,即可知结果为常数,即得证;(3)由(2)可得数列的通项公式,,设出等差数列,再根据不等关系来算出的首项和公差即可.【详解】(1)设等比数列的公比为q,因为,,所以,解得.所以数列的通项公式为:.(2)由(1)得,当,时,可得①,②②①得,,则有,即,,.因为,由①得,,所以,所以,.所以数列是以为首项,1为公差的等差数列.(3)由(2)得,所以,.假设存在等差数列,其通项,使得对任意,都有,即对任意,都有.③首先证明满足③的.若不然,,则,或.(i)若,则当,时,,这与矛盾.(ii)若,则当,时,.而,,所以.故,这与矛盾.所以.其次证明:当时,.因为,所以在上单调递增,所以,当时,.所以当,时,.再次证明.(iii)若时,则当,,,,这与③矛盾.(iv)若时,同(i)可得矛盾.所以.当时,因为,,所以对任意,都有.所以,.综上,存在唯一的等差数列,其通项公式为,满足题设.【点睛】本题考查求等比数列通项公式,证明等差数列,以及数列中的探索性问题,是一道数列综合题,考查学生的分析,推理能力.18、(1):,:;(2)【解析】
(1)根据点斜式写出直线的直角坐标方程,并转化为极坐标方程,利用,将曲线的参数方程转化为普通方程.(2)将直线的参数方程代入曲线的普通方程,结合直线参数的几何意义以及根与系数关系,求得的值.【详解】(1)的直角坐标方程为,即,则的极坐标方程为.曲线的普通方程为.(2)直线的参数方程为(为参数,为的倾斜角),代入曲线的普通方程,得.设,对应的参数分别为,,所以,在的两侧.则.【点睛】本小题主要考查直角坐标化为极坐标,考查参数方程化为普通方程,考查直线参数方程,考查直线参数的几何意义,属于中档题.19、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(Ⅱ),由数列的错位相减法求和可得,解方程可得所求值.【详解】(Ⅰ)等比数列,其公比,且满足,和的等差中项是即有,解得:(Ⅱ)由(Ⅰ)知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题.20、(1)0.98;可用线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年乡镇红十字会招聘考试模拟试题及答案
- 2025年养老行业热点解读居家养老服务评估方向中级考试要点
- 2025年高纯铟及氧化铟项目合作计划书
- 2025年车载空气净化器项目合作计划书
- 2025年无碱玻璃基片项目发展计划
- 2025年绕线绞线设备项目建议书
- 第二章 实数 单元测试 培优卷 (含答案)2025-2026北师大版八上
- 新闻常识题目及答案高中
- 胰腺疾病诊断与治疗阅读札记
- 扑火队安全培训会议内容课件
- GB/T 41696-2022下肢康复训练设备的分类及通用技术条件
- GB/T 2423.7-1995电工电子产品环境试验第2部分:试验方法试验Ec和导则:倾跌与翻倒(主要用于设备型样品)
- 西师版四年级数学上册第一单元测试题(A)
- 花甲水库库底清理实施方案(修订稿)
- 中医李源生针拔法治疗脑胶质瘤
- 麻醉科诊疗规范与操作常规
- 《红楼梦》中的服饰文化共38张课件
- 通风空调投标技术标版
- 新浙美版五年级上册美术教学计划
- 水产食品原料中的生物活性物质课件
- 小学四年级数学上册口算100题
评论
0/150
提交评论