




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
23/232017-2021全国高考真题数学汇编圆锥曲线章节综合一、单选题1.(2017·全国·高考真题(文))过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A. B. C. D.2.(2018·全国·高考真题(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B. C. D.3.(2018·全国·高考真题(文))已知椭圆:的一个焦点为,则的离心率为A. B. C. D.4.(2017·全国·高考真题(文))已知F是双曲线C:的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则的面积为A. B.C. D.5.(2019·全国·高考真题(文))已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B. C. D.6.(2021·全国·高考真题(理))设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B. C. D.7.(2020·全国·高考真题(理))设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1 B.2 C.4 D.88.(2020·全国·高考真题(文))设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3 C. D.29.(2017·全国·高考真题(理))已知双曲线的一条渐近线方程为,且与椭圆有公共焦点.则C的方程为()A. B.C. D.10.(2018·全国·高考真题(文))已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.11.(2019·全国·高考真题(文))已知是双曲线的一个焦点,点在上,为坐标原点,若,则的面积为A. B. C. D.12.(2020·全国·高考真题(文))设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B. C. D.13.(2021·全国·高考真题(理))已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B. C. D.14.(2019·全国·高考真题(理))双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则△PFO的面积为A. B. C. D.15.(2020·全国·高考真题(理))已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3 C.6 D.9二、填空题16.(2018·全国·高考真题(理))已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.17.(2017·全国·高考真题(理))已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.18.(2019·全国·高考真题(理))设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.19.(2020·全国·高考真题(理))已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.20.(2021·全国·高考真题)若双曲线的离心率为2,则此双曲线的渐近线方程___________.三、解答题21.(2019·全国·高考真题(理))已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.22.(2018·全国·高考真题(理))已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.23.(2019·全国·高考真题(理))已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2021·全国·高考真题(理))已知抛物线的焦点为,且与圆上点的距离的最小值为.(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值.25.(2017·全国·高考真题(文))设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.26.(2021·全国·高考真题)已知椭圆C的方程为,右焦点为,且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.27.(2020·全国·高考真题(文))已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.28.(2019·全国·高考真题(文))已知是椭圆的两个焦点,P为C上一点,O为坐标原点.(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.
参考答案1.C【分析】联立方程解得M(3,),根据MN⊥l得|MN|=|MF|=4,得到△MNF是边长为4的等边三角形,计算距离得到答案.【详解】依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3.由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.2.B【详解】分析:由双曲线性质得到,然后在和在中利用余弦定理可得.详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.3.C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为,从而求得,再根据题中所给的方程中系数,可以得到,利用椭圆中对应的关系,求得,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知,因为,所以,即,所以椭圆的离心率为,故选C.点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中的关系求得结果.4.D【详解】由得,所以,将代入,得,所以,又点A的坐标是(1,3),故△APF的面积为,选D.点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得,结合PF与x轴垂直,可得,最后由点A的坐标是(1,3),计算△APF的面积.5.B【分析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.所求椭圆方程为,故选B.法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.6.C【分析】设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可.【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立.故选:C.【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.7.A【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】,,根据双曲线的定义可得,,即,,,,即,解得,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.8.B【分析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.9.B【分析】根据已知可得,双曲线焦距,结合的关系,即可求出结论.【详解】因为双曲线的一条渐近线方程为,则.①又因为椭圆与双曲线有公共焦点,双曲线的焦距,即c=3,则a2+b2=c2=9.②由①②解得a=2,b=,则双曲线C的方程为.故选:B.【点睛】本题考查椭圆、双曲线的标准方程以及双曲线的简单几何性质,属于基础题.10.D【详解】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.详解:在中,设,则,又由椭圆定义可知则离心率,故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.11.B【分析】设,因为再结合双曲线方程可解出,再利用三角形面积公式可求出结果.【详解】设点,则①.又,②.由①②得,即,,故选B.【点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.12.B【分析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.A【分析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.14.A【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.【详解】由,又P在C的一条渐近线上,不妨设为在上,,故选A.【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.15.C【分析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.16.2【分析】利用点差法得到AB的斜率,结合抛物线定义可得结果.【详解】详解:设则所以所以取AB中点,分别过点A,B作准线的垂线,垂足分别为因为,,因为M’为AB中点,所以MM’平行于x轴因为M(-1,1)所以,则即故答案为2.【点睛】本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设,利用点差法得到,取AB中点,分别过点A,B作准线的垂线,垂足分别为,由抛物线的性质得到,进而得到斜率.17.6【分析】如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.18.【分析】根据椭圆的定义分别求出,设出的坐标,结合三角形面积可求出的坐标.【详解】由已知可得,.∴.设点的坐标为,则,又,解得,,解得(舍去),的坐标为.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.19.2【分析】根据双曲线的几何性质可知,,,即可根据斜率列出等式求解即可.【详解】联立,解得,所以.依题可得,,,即,变形得,,因此,双曲线的离心率为.故答案为:.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.20.【分析】根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.【详解】解:由题可知,离心率,即,又,即,则,故此双曲线的渐近线方程为.故答案为:.21.(1)详见解析(2)详见解析【分析】(1)分别求出直线AM与BM的斜率,由已知直线AM与BM的斜率之积为−,可以得到等式,化简可以求出曲线C的方程,注意直线AM与BM有斜率的条件;(2)(i)设出直线的方程,与椭圆方程联立,求出P,Q两点的坐标,进而求出点的坐标,求出直线的方程,与椭圆方程联立,利用根与系数关系求出的坐标,再求出直线的斜率,计算的值,就可以证明出是直角三角形;(ii)由(i)可知三点坐标,是直角三角形,求出的长,利用面积公式求出的面积,利用导数求出面积的最大值.【详解】(1)直线的斜率为,直线的斜率为,由题意可知:,所以曲线C是以坐标原点为中心,焦点在轴上,不包括左右两顶点的椭圆,其方程为;(2)(i)设直线的方程为,由题意可知,直线的方程与椭圆方程联立,即或,点P在第一象限,所以,因此点的坐标为直线的斜率为,可得直线方程:,与椭圆方程联立,,消去得,(*),设点,显然点的横坐标和是方程(*)的解所以有,代入直线方程中,得,所以点的坐标为,直线的斜率为;,因为所以,因此是直角三角形;(ii)由(i)可知:,的坐标为,,,,因为,所以当时,,函数单调递增,当时,,函数单调递减,因此当时,函数有最大值,最大值为.【点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了利用导数求函数最大值问题.22.(1)(2)或【详解】分析:(1)设而不求,利用点差法进行证明.(2)解出m,进而求出点P的坐标,得到,再由两点间距离公式表示出,得到直的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设,则.两式相减,并由得.由题设知,于是.①由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大.23.(1)见详解;(2)3或.【分析】(1)可设,,然后求出A,B两点处的切线方程,比如:,又因为也有类似的形式,从而求出带参数直线方程,最后求出它所过的定点.(2)由(1)得带参数的直线方程和抛物线方程联立,再通过为线段的中点,得出的值,从而求出坐标和的值,分别为点到直线的距离,则,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设,,则.又因为,所以.则切线DA的斜率为,故,整理得.设,同理得.,都满足直线方程.于是直线过点,而两个不同的点确定一条直线,所以直线方程为.即,当时等式恒成立.所以直线恒过定点.(2)由(1)得直线的方程为.由,可得,于是.设分别为点到直线的距离,则.因此,四边形ADBE的面积.设M为线段AB的中点,则,由于,而,与向量平行,所以,解得或.当时,;当时因此,四边形的面积为3或.【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.24.(1);(2).【分析】(1)根据圆的几何性质可得出关于的等式,即可解出的值;(2)设点、、,利用导数求出直线、,进一步可求得直线的方程,将直线的方程与抛物线的方程联立,求出以及点到直线的距离,利用三角形的面积公式结合二次函数的基本性质可求得面积的最大值.【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,,设圆M上的点,则.所以.从而有.因为,所以当时,.又,解之得,因此.[方法二]【最优解】:利用圆的几何意义求最小值抛物线的焦点为,,所以,与圆上点的距离的最小值为,解得;(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法抛物线的方程为,即,对该函数求导得,设点、、,直线的方程为,即,即,同理可知,直线的方程为,由于点为这两条直线的公共点,则,所以,点A、的坐标满足方程,所以,直线的方程为,联立,可得,由韦达定理可得,,所以,,点到直线的距离为,所以,,,由已知可得,所以,当时,的面积取最大值.[方法二]:【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到.过P作y轴的平行线交于Q,则..P点在圆M上,则.故当时的面积最大,最大值为.[方法三]:直接设直线AB方程法设切点A,B的坐标分别为,.设,联立和抛物线C的方程得整理得.判别式,即,且.抛物线C的方程为,即,有.则,整理得,同理可得.联立方程可得点P的坐标为,即.将点P的坐标代入圆M的方程,得,整理得.由弦长公式得.点P到直线的距离为.所以,其中,即.当时,.【整体点评】(1)方法一利用两点间距离公式求得关于圆M上的点的坐标的表达式,进一步转化为关于的表达式,利用二次函数的性质得到最小值,进而求得的值;方法二,利用圆的性质,与圆上点的距离的最小值,简洁明快,为最优解;(2)方法一设点、、,利用导数求得两切线方程,由切点弦方程思想得到直线的坐标满足方程,然手与抛物线方程联立,由韦达定理可得,,利用弦长公式求得的长,进而得到面积关于坐标的表达式,利用圆的方程转化得到关于的二次函数最值问题;方法二,同方法一得到,,过P作y轴的平行线交于Q,则.由求得面积关于坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线,联立直线和抛物线方程,利用韦达定理判别式得到,且.利用点在圆上,求得的关系,然后利用导数求得两切线方程,解方程组求得P的坐标,进而利用弦长公式和点到直线距离公式求得面积关于的函数表达式,然后利用二次函数的性质求得最大值;25.(1)1;(2)y=x+7.【分析】(1)设A(x1,y1),B(x2,y2),直线AB的斜率k==,代入即可求得斜率;(2)由(1)中直线AB的斜率,根据导数的几何意义求得M点坐标,设直线AB的方程为y=x+m,与抛物线联立,求得根,结合弦长公式求得AB,由知,|AB|=2|MN|,从而求得参数m.【详解】解:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k===1.(2)由y=,得y′=.设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2.从而|AB|=|x1-x2|=.由题设知|AB|=2|MN|,即=2(m+1),解得m=7.所以直线AB的方程为y=x+7.26.(1);(2)证明见解析.【分析】(1)由离心率公式可得,进而可得,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证;充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得,进而可得,即可得解.【详解】(1)由题意,椭圆半焦距且,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030生物相似性单克隆抗体行业发展趋势分析与未来投资战略咨询研究报告
- 2025年公需科目测试及答案
- 2025年生态城市规划建设技术考核试卷
- 2025至2030全球及中国覆盆子酱行业项目调研及市场前景预测评估报告
- 2025年新能源汽车电控系统调试技术考核试卷
- 93.2025年金融与财经行业准入考试金融数据治理规范(金融数据治理中的第三方数据合规管理)考核试卷
- 2025年疫苗接种规范操作考试:冷链安全管理体系考核试卷
- 2025至2030神经副肿瘤综合征治疗行业产业运行态势及投资规划深度研究报告
- 协议书三 保护铁驭
- 校讯通协议书
- 神舟十号课件
- 河南省委党校在职研究生入学考试真题及答案
- 幼儿园设备安装方案
- 红十字协会AED课件
- 汽车产品安全管理制度
- 企业风险防控制度汇编与实施指南
- 2025-2026学年冀人版(2024)小学科学二年级上册(全册)教学设计(附教材目录 )
- 2025-2030年中国农机行业市场深度调研及前景趋势与投资研究报告
- 皮线光缆施工规范
- 安全生产法律法规、标准和其他要求清单
- 共享单车进校园项目计划书
评论
0/150
提交评论