




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2.1函数的概念复习提问1.初中所学的函数的概念是什么?
复习提问1.初中所学的函数的概念是什么?
在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应.那么就说y是x的函数,其中x叫做自变量.
在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应.那么就说y是x的函数,其中x叫做自变量.复习提问2.初中学过哪些函数?1.初中所学的函数的概念是什么?
复习提问正比例函数、反比例函数、一次函数、二次函数等.1.初中所学的函数的概念是什么?
在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应.那么就说y是x的函数,其中x叫做自变量.2.初中学过哪些函数?示例1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t
(单位:s)变化的规律是h=130t-5t2.新课示例2:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题.下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.示例3:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.时间(年)199119921993199419951996城镇居民家庭恩格尔系数(%)53.852.950.149.949.948.6时间(年)19971998199920002001城镇居民家庭恩格尔系数(%)46.444.541.939.237.9
“八五”计划以来我国城镇居民恩格尔系数变化情况1.定义形成概念
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,
1.定义形成概念
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:
y=f(x),xA1.定义形成概念
其中,x叫做自变量,
1.定义
其中,x叫做自变量,x的取值范围A叫做函数的定义域;
1.定义
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x值相对应的y的值叫做函数值,1.定义
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x值相对应的y的值叫做函数值,函数值的集合{f(x)|x
A}叫做函数的值域.1.定义
定义域A;值域{f(x)|x∈R};对应法则f.2.函数的三要素:
定义域A;值域{f(x)|x∈R};对应法则f.2.函数的三要素:(2)f表示对应法则,不同函数中f
的具体含义不一样;函数符号y=f(x)表示y是x的函数,
f(x)不是表示f与x的乘积;3.表示函数的方法:解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式.列表法:列出表格来表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系.⑴一次函数f(x)=ax+b(a≠0)4.已学函数的定义域和值域4.已学函数的定义域和值域定义域R,值域R.⑴一次函数f(x)=ax+b(a≠0)4.已学函数的定义域和值域定义域R,值域R.⑴一次函数f(x)=ax+b(a≠0)⑵4.已学函数的定义域和值域定义域R,值域R.定义域{x|x≠0},值域{y|y≠0}.⑴一次函数f(x)=ax+b(a≠0)⑵4.已学函数的定义域和值域⑶二次函数f(x)=ax2+bx+c(a≠0)4.已学函数的定义域和值域⑶二次函数f(x)=ax2+bx+c(a≠0)定义域:R,4.已学函数的定义域和值域⑶二次函数f(x)=ax2+bx+c(a≠0)定义域:R,值域:当a>0时,当a<0时,(3)若有x0
,x≠0;
(4)以上式子构成的函数定义域是使各部分式子都有意义的实数集合.2.求给定函数解析式的定义域往往可以归结为解不等式或不等式组的问题;3.如果是实际问题,除应考虑解析式本身有意义外,还应考虑实际问题有意义.例1求下列函数的定义域:例题讲解⑶⑵⑴例2已知函数f(x)=3x2-5x+2,求f(3),⑴⑵⑶⑷例2⑴⑵⑶⑷例2例4下列各组中的两个函数是否为相同的函数?⑶⑵⑴例4下列各组中的两个函数是否为相同的函数?(定义域不同)⑶⑵⑴例4下列各组中的两个函数是否为相同的函数?(定义域不同)⑶⑵⑴(定义域不同)例4下列各组中的两个函数是否为相同的函数?(定义域不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论