




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在中..是的角平分线.若在边上截取,连接,则图中等腰三角形共有()A.3个 B.5个 C.6个 D.2个2.关于的一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.不能确定3.某班七个兴趣小组人数分别为4,4,5,x,1,1,1.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.1 C.5 D.44.如图,平行四边形的顶点,在轴上,顶点在上,顶点在上,则平行四边形的面积是()A. B. C. D.5.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=()A.80° B.100° C.110° D.120°6.如图,的直径,是的弦,,垂足为,且,则的长为()A.10 B.12 C.16 D.187.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.8.用配方法解方程,方程应变形为()A. B. C. D.9.若反比例函数y=(k≠0)的图象经过点(﹣4,),则下列点在该图象上的是()A.(﹣5,2) B.(3,﹣6) C.(2,9) D.(9,2)10.矩形、菱形、正方形都具有的性质是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线互相平分且相等二、填空题(每小题3分,共24分)11.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是________.12.在平面直角坐标系中,点P(﹣2,1)关于原点的对称点P′的坐标是_____________.13.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.14.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则线段ON的长为_____.15.若直线与函数的图象有唯一公共点,则的值为__;有四个公共点时,的取值范围是_16.如图,是的切线,为切点,连接.若,则=__________.17.如图,在⊙O中,∠AOB=60°,则∠ACB=____度.18.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米到D处,此时在D处测得山顶B的仰角为60°,则山高BC=_____米(结果保留根号).三、解答题(共66分)19.(10分)已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.20.(6分)如图所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,动点P从点A开始,以1mm/S的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4m/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm1.(1)写出y与x之间的函数表达式;(1)当x=1时,求四边形APQC的面积.21.(6分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.22.(8分)据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”大意如下:如图,今有山位于树的西面.山高为未知数,山与树相距里,树高丈尺,人站在离树里的处,观察到树梢恰好与山峰处在同一斜线上,人眼离地尺,问山AB的高约为多少丈?(丈尺,结果精确到个位)23.(8分)近年来,在总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霸天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计图对雾霾天气了解程度的统计图对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解请结合统计图表,回答下列问题:(1)本次参与调查的学生共有______人,______;(2)请补全条形统计图;(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为奇数,则小明去,否则小刚去,请用画树状图或列表说明这个游戏规则是否公平.24.(8分)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.25.(10分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.26.(10分)抛物线直线一个交点另一个交点在轴上,点是线段上异于的一个动点,过点作轴的垂线,交抛物线于点.(1)求抛物线的解析式;(2)是否存在这样的点,使线段长度最大?若存在,求出最大值及此时点的坐标,若不存在,说明理由;(3)求当为直角三角形时点P的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据等腰三角形的判定及性质和三角形的内角和定理求出各角的度数,逐一判断即可.【详解】解:∵,∴∠ABC=∠ACB=72°,∠A=180°-∠ABC-∠ACB=36°,△ABC为等腰三角形∵是的角平分线∴∠ABD=∠CBD=∠ABC=36°∴∠BDC=180°-∠CBD-∠C=72°,∠ABD=∠A∴∠BDC=∠ACB,DA=DB,△DBC为等腰三角形∴BC=BD,△BCD为等腰三角形∵∴∠BED=∠BDE=(180°-∠ABD)=72°,△BEC为等腰三角形∴∠AED=180°-∠BED=108°∴∠EDA=180°-∠AED-∠A=36°∴∠EDA=∠A∴ED=EA,△EDA为等腰三角形共有5个等腰三角形故选B.【点睛】此题考查的是等腰三角形的判定及性质和三角形的内角和,掌握等边对等角、等角对等边和三角形的内角和定理是解决此题的关键.2、A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.3、C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,3,x,1,1,2.已知这组数据的平均数是3,
∴x=3×2-4-4-3-1-1-2=3,
∴这一组数从小到大排列为:3,4,4,3,1,1,2,
∴这组数据的中位数是:3.
故选:C.【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键.4、D【分析】先过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,再根据反比例函数系数k的几何意义,求得△ABE的面积=△COD的面积相等=|k2|,△AOE的面积=△CBD的面积相等=|k1|,最后计算平行四边形的面积.【详解】解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE与S△COD相等,又∵点C在的图象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故选D.【点睛】本题主要考查了反比例函数系数k的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.5、C【分析】直接利用圆内接四边形的性质分析得出答案.【详解】∵四边形ABCD内接于⊙O,E为CD延长线上一点,∠ADE=110°,∴∠B=∠ADE=110°.故选:C.【点睛】本题考查圆内接四边形的性质.熟练掌握圆内接四边形的性质:圆内接四边形的对角互补;.圆内接四边形的外角等于它的内对角是解题的关键.6、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.7、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【详解】解:过点B作BC垂直OA于C,
∵点A的坐标是(2,0)
,AO=4,
∵△ABO是等边三角形∴OC=
2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【点睛】本题考查的是利用等边三角形的性质来确定反比例函数的k值.8、D【分析】常数项移到方程的右边,两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,
∴,即,
故选:D.【点睛】本题考查配方法解一元二次方程,熟练掌握完全平方公式和配方法的基本步骤是解题的关键.9、B【分析】根据反比例函数y=(k≠0)的图象经过点(﹣4,)求出k的值,进而根据在反比例函数图像上的点的横纵坐标的积应该等于其比例系数对各选项进行代入判断即可.【详解】∵若反比例函数y=(k≠0)的图象经过点(﹣4,),∴k=﹣4×=﹣18,A:,故不在函数图像上;B:,故在函数图像上;C:,故不在函数图像上;D:,故不在函数图像上.故选:B.【点睛】本题主要考查了反比例函数图像上点的坐标特征,求出k的值是解题关键.10、B【分析】矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.【详解】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.
故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.
故选:B.【点睛】本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.二、填空题(每小题3分,共24分)11、32【解析】分3为等腰三角形的腰与3为等腰三角形的底两种情况考虑.①当3为等腰三角形的腰时,将x=3代入原方程可求出k的值,再利用分解因式法解一元二次方程可求出等腰三角形的底,由三角形的三边关系可确定此情况不存在;②当3为等腰三角形的底时,由方程的系数结合根的判别式可得出△=144﹣4k=0,解之即可得出k值,进而可求出方程的解,再利用三角形的三边关系确定此种情况符合题意.此题得解.【详解】①当3为等腰三角形的腰时,将x=3代入原方程得1﹣12×3+k=0,解得:k=27,此时原方程为x2﹣12x+27=0,即(x﹣3)(x﹣1)=0,解得:x1=3,x2=1.∵3+3=2<1,∴3不能为等腰三角形的腰;②当3为等腰三角形的底时,方程x2﹣12x+k=0有两个相等的实数根,∴△=(﹣12)2﹣4k=144﹣4k=0,解得:k=32,此时x1=x22.∵3、2、2可以围成等腰三角形,∴k=32.故答案为32.【点睛】本题考查了解一元二次方程-因式分解法、根的判别式、三角形的三边关系以及等腰三角形的性质,分3为等腰三角形的腰与3为等腰三角形的底两种情况考虑是解题的关键.12、(2,﹣1)【详解】解:点P(﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).故答案为(2,﹣1).【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反.13、4【分析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.【详解】如图,连接并延长交于G,连接并延长交于H,∵点E、F分别是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.14、1.【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH,MH,MB,CH,CO,然后证明△CON∽△CHM,再利用相似三角形的性质可计算出ON的长.【详解】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,MH⊥AC,MB⊥BC∴BM=MH=,∴AB=2+,∴AC=AB=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故答案为:1.【点睛】本题主要考查正方形的性质及相似三角形的判定及性质,掌握正方形的性质及相似三角形的性质是解题的关键.15、-3【分析】根据函数y=|x2-2x-3|与直线y=x+m的图象之间的位置关系即可求出答案.【详解】解:作出y=|x2-2x-3|的图象,如图所示,∴y=,当直线y=x+m与函数y=|x2-2x-3|的图象只有1个交点时,直线经过点(3,0),将(3,0)代入直线y=x+m,得m=-3,联立,消去y后可得:x2-x+m-3=0,
令△=0,
可得:1-4(m-3)=0,
m=,即m=时,直线y=x+m与函数y=|x2-2x-3|的图象只有3个交点,
当直线过点(-1,0)时,
此时m=1,直线y=x+m与函数y=|x2-2x-3|的图象只有3个交点,
∴直线y=x+m与函数y=|x2-2x-3|的图象有四个公共点时,m的范围为:,故答案为:-3,.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.16、65°【分析】根据切线长定理即可得出AB=AC,然后根据等边对等角和三角形的内角和定理即可求出结论.【详解】解:∵是的切线,∴AB=AC∴∠ABC=∠ACB=(180°-∠A)=65°故答案为:65°.【点睛】此题考查的是切线长定理和等腰三角形的性质,掌握切线长定理和等边对等角是解决此题的关键.17、1.【详解】解:同弧所对圆心角是圆周角的2倍,所以∠ACB=∠AOB=1°.∵∠AOB=60°∴∠ACB=1°故答案为:1.【点睛】本题考查圆周角定理.18、300+100【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题.【详解】作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠DAC=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=300(米),∴BC=BE+EC=300+100(米);故答案为:300+100.【点睛】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题三、解答题(共66分)19、见解析证明.【解析】试题分析:连结OC,根据平行线的性质得到∠1=∠B,∠2=∠3,而∠B=∠3,所以∠1=∠2,则根据圆心角、弧、弦的关系即可得到结论.试题解析:连结OC,如图,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.考点:圆心角、弧、弦的关系.20、(1)y=4x1﹣14x+144;(1)111mm1.【分析】(1)用x表示PB和BQ.利用两个直角三角形的面积差求得答案即可;(1)求出x=1时,y的值即可得.【详解】解:(1)∵运动时间为x,点P的速度为1mm/s,点Q的速度为4mm/s,∴PB=11﹣1x,BQ=4x,∴y=.(1)当x=1时,y=4×11﹣14×1+144=111,即当x=1时,四边形APQC的面积为111mm1.【点睛】本题考查了几何动点与二次函数的问题,解题的关键是根据动点的运动表示出函数关系式.21、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:即:∴a=50k,b=47k则再次比赛,姐姐的时间为:=秒妹妹的时间为:秒∵,∴<,即姐姐用时短,姐姐先到达终点(2)情况一:姐姐退后x米,两人同时到达终点则:=,解得:x=情况二:妹妹向前y米,两人同时到达终点则:=,解得:y=3综上得:姐姐退后米或妹妹前进3米,两人同时到达终点【点睛】本题考查行程问题,解题关键是引入辅助元k,用于表示姐姐和妹妹的速度关系.22、由的高约为丈.【分析】由题意得里,尺,尺,里,过点作于点,交于点,得尺,里,里,根据相似三角形的性质即可求出.【详解】解:由题意得里,尺,尺,里.如图,过点作于点,交于点.则尺,里,里,,∴△ECH∽△EAG,,丈,丈.答:由的高约为丈.【点睛】此题主要考查了相似三角形在实际生活中的应用,能够将实际问题转化成相似三角形是解题的关键.23、(1)400,35%;(2)条形统计图见解析;(3)不公平.【分析】(1)用A等级的人数除以它所占的百分比可得调查的总人数,然后用1减去其它等级的百分比即可求得n的值;(3)先计算出D等级的人数,然后补全条形统计图即可;(4)通过树状图可确定12种等可能的结果,再找出和为奇数的结果有8种,再确定出为奇数的概率,再确定小明去和小刚去的概率,最后比较即可解答.【详解】解:(1)由统计图可知:A等级的人数为20,所占的百分比为5%则本次参与调查的学生共有20÷5%=400人;1-5%-15%-45%=35%;(2)由统计图可知:A等级的人数所占的百分比为45%D等级的人数为400×35%=140(人)补全条形统计图如下:(3)根据题意画出树状图如下:可发现共有12种等可能的结果且和为奇数的结果有8种所以小明去的概率为:小刚去的概率为:.由>.所以这个游戏规则不公平.【点睛】本题考查了游戏的公平性,先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平,这是解答游戏公平性题目的关键.24、(1)CB=2,AP=2;(2)证明见解析;(3)DE=.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得,再利用比例性质可计算出DE=.【详解】解:(1)∵AC为直径,∴∠ABC=90°,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毛皮服装设计中的传统文化融入考核试卷
- 毛皮制品国际贸易合同考核试卷
- 病房护理技能竞赛与评价考核试卷
- 2025年大型设备采购合同范本
- 肇庆市实验中学高二下学期第九周历史文科晚练
- 2025大型设备租赁合同模板
- 2025年签订合同应注意的关键细节
- 人工挖孔合同书
- 二零二五公司整体转让合同书范例
- 广播电视台广告发布合同二零二五年
- 美国加征关税从多个角度全方位解读关税课件
- “皖南八校”2024-2025学年高一第二学期期中考试-英语(译林版)及答案
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 【MOOC】机械原理-西北工业大学 中国大学慕课MOOC答案
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 《运营管理》案例库
- 煤矿安全监控系统设备管理报废制度
- 机关事业单位退休人员养老金领取资格确认表
- 第五届“国药工程杯”全国大学生制药工程设计竞赛
- 柔性主动防护网分项工程质量检验评定表
- 中机2015~2016年消防系统维保养护年度总结报告
评论
0/150
提交评论