2022年吉林省长春市普通高校对口单招数学自考预测试题(含答案)_第1页
2022年吉林省长春市普通高校对口单招数学自考预测试题(含答案)_第2页
2022年吉林省长春市普通高校对口单招数学自考预测试题(含答案)_第3页
2022年吉林省长春市普通高校对口单招数学自考预测试题(含答案)_第4页
2022年吉林省长春市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年吉林省长春市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.要得到函数y=sin2x的图像,只需将函数:y=cos(2x-π/4)的图像A.向左平移π/8个单位B.向右平移π/8个单位C.向左平移π/4个单位D.向右平移π/4个单位

2.下列函数中是奇函数,且在(-∞,0)减函数的是()A.y=

B.y=1/x

C.y==x2

D.y=x3

3.现无放回地从1,2,3,4,5,6这6个数字中任意取两个,两个数均为偶数的概率是()A.1/5B.1/4C.1/3D.1/2

4.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线

B.若|a|=|b|,则a=b

C.若a,b为两个单位向量,则a·a=b·b

D.若a⊥b,则a·b=0

5.A.3

B.8

C.

6.

7.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]

8.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}

9.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8

10.A.

B.

C.

D.U

11.△ABC的内角A,B,C的对边分别为a,b,c已知a=,c=2,cosA=2/3,则b=()A.

B.

C.2

D.3

12.A.B.C.D.

13.在ABC中,C=45°,则(1-tanA)(1-tanB)=()A.1B.-1C.2D.-2

14.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3

15.A.B.C.D.

16.拋掷两枚骰子,两次点数之和等于5的概率是()A.

B.

C.

D.

17.已知椭圆x2/25+y2/m2=1(m>0)的左焦点为F1(-4,0)则m=()A.2B.3C.4D.9

18.椭圆x2/2+y2=1的焦距为()A.1

B.2

C.3

D.

19.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥

20.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,-∞)

二、填空题(10题)21.

22.方程扩4x-3×2x-4=0的根为______.

23.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.

24.若x<2,则_____.

25.

26.

27.已知函数,若f(x)=2,则x=_____.

28.

29.若ABC的内角A满足sin2A=则sinA+cosA=_____.

30.设平面向量a=(2,sinα),b=(cosα,1/6),且a//b,则sin2α的值是_____.

三、计算题(5题)31.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

32.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

33.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

34.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

35.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、简答题(10题)36.由三个正数组成的等比数列,他们的倒数和是,求这三个数

37.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

38.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

39.化简

40.已知cos=,,求cos的值.

41.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

42.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

43.证明:函数是奇函数

44.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

45.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程

五、证明题(10题)46.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

47.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

48.己知sin(θ+α)=sin(θ+β),求证:

49.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

50.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

51.若x∈(0,1),求证:log3X3<log3X<X3.

52.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

53.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

54.△ABC的三边分别为a,b,c,为且,求证∠C=

55.

六、综合题(2题)56.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

57.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

参考答案

1.B三角函数图像的性质.将函数y=cos(2x-π/4)向右平移π/8个单位,得到y=cos(2(x-π/8)-π/4)=cos(2x-π/2)=sin2x

2.B函数奇偶性,增减性的判断.A是非奇非偶函数;C是偶函数;D是增函数.

3.A

4.B向量包括长度和方向,模相等方向不一定相同,所以B错误。

5.A

6.C

7.D不等式的计算,集合的运算.由题知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]

8.B集合的运算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}

9.A

10.B

11.D解三角形的余弦定理.由余弦定理,得5=b2+22-2×b×2×2/3,解得b=3(b=1/3舍去),

12.A

13.C

14.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3

15.A

16.A

17.B椭圆的性质.由题意知25-m2=16,解得m2=9,又m>0,所以m=3.

18.B椭圆的定义.a2=1,b2=1,

19.B几何体的三视图.由三视图可知该几何体为空心圆柱

20.C函数的定义.x+1>0所以x>-1.

21.-2/3

22.2解方程.原方程即为(2x)-3.2x-4=0,解得2x=4或2x=-1(舍去),解得x=2.

23.45°,由题可知,因此B=45°。

24.-1,

25.-16

26.33

27.

28.(-7,±2)

29.

30.2/3平面向量的线性运算,三角函数恒等变换.因为a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.

31.

32.

33.

34.

35.

36.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1

37.原式=

38.

39.sinα

40.

41.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

42.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

43.证明:∵∴则,此函数为奇函数

44.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

45.

46.

47.

48.

49.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

50.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

51.

52.

53.

∴PD//平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论