




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.(3分)|-2|=()
A.-2B.2C.」D.A
22
2.(3分)计算22的结果是()
A.1B.V2C.2D.4
3.(3分)下列图形中有稳定性的是()
A.三角形B.平行四边形C.长方形D.正方形
4.(3分)如图,直线Zl=40°,则N2=()
5.(3分)如图,在△ABC中,8c=4,点。,E分别为AB,AC的中点,则()
A
6.(3分)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()
A.(3,1)B.(-1,1)C.(1,3)D.(1,-1)
7.(3分)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()
A.AB.Ac.AD.2
4323
8.(3分)如图,在。ABC。中,一定正确的是()
AB
A.AD=CDB.AC=BDC.AB=CDD.CD=BC
9.(3分)点(1,ji),(2,”),(3,>3),(4,>4)在反比例函数y=且图象上,则yi,”,
x
y3,y4中最小的是()
A.y\B.y2C."D.y4
10.(3分)水中涟漪(圆形水波)不断扩大,记它的半径为小则圆周长C与〃的关系式为
C=2n几下列判断正确的是()
A.2是变量B.Ti是变量C.r是变量D.C是常量
二、填空题:本大题共5小题,每小题3分,共15分.
11.(3分)sin30°=.
12.(3分)单项式3盯的系数为.
13.(3分)菱形的边长为5,则它的周长是.
14.(3分)若x=l是方程/-2x+a=0的根,则。=.
15.(3分)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留H)为.
三、解答题(一):本大题共3小题,每小题8分,共24分.
‘3x-2>l
16.(8分)解不等式组:
'x+l<3
2」
17.(8分)先化简,再求值:。十三二U其中。=5.
a-l
18.(8分)如图,已知/4OC=/8OC,点尸在0c上,PDA.OA,PELOB,垂足分别为
D,E.求证:△OP。岭△OPE.
四、解答题(二):本大题共3小题,每小题9分,共27分.
19.(9分)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,
则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?
20.(9分)物理实验证实:在弹性限度内,某弹簧长度y(。小)与所挂物体质量x(kg)满
足函数关系>=自+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.
X025
y151925
(1)求),与x的函数关系式;
(2)当弹簧长度为20c加时,求所挂物体的质量.
21.(9分)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对
销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),
数据如下:
1047541054418835108
(1)补全月销售额数据的条形统计图.
(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均
月销售额(平均数)是多少?
(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少
合适?
22.(12分)如图,四边形ABCD内接于。。,AC为。。的直径,NADB=NCDB.
(1)试判断△A8C的形状,并给出证明;
(2)若AD=\,求C£>的长度.
D
23.(12分)如图,抛物线y=f+6x+cc是常数)的顶点为C,与x轴交于A,B两点,
A(1,0),AB=4,点P为线段AB上的动点,过P作PQ〃BC交AC于点。.
(1)求该抛物线的解析式;
(2)求△CPQ面积的最大值,并求此时P点坐标.
2022年广东省中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.(3分)|-2|=()
A.-2B.2C.」D.A
22
【分析】根据绝对值的意义解答即可.
【解答】解:根据绝对值的意义:|-2|=2,
故选:B.
【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.
2.(3分)计算22的结果是()
A.1B.V2C.2D.4
【分析】应用有理数的乘方运算法则进行计算即可得出答案.
【解答】解:22=4.
故选:D.
【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解
决本题的关键.
3.(3分)下列图形中有稳定性的是()
A.三角形B.平行四边形C.长方形D.正方形
【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.
【解答】解:三角形具有稳定性,四边形不具有稳定性,
故选:A.
【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.
4.(3分)如图,直线Zl=40°,则N2=()
A.30°B.40°C.50°D.60°
【分析】利用平行线的性质可得结论.
【解答】':a//b,
.•./2=N1=4O°.
故选:B.
【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的
关键.
5.(3分)如图,在aABC中,BC=4,点D,E分别为AB,AC的中点,则。E=()
A.AB.Ac.ID.2
42
【分析】由题意可得DE是aABC的中位线,再根据三角形中位线的性质即可求出DE
的长度.
【解答】解::点。,E分别为48,AC的中点,8c=4,
.,.OE是△A8C的中位线,
.•.DE=ABC=AX4=2,
22
故选:D.
【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问
题的关键.
6.(3分)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()
A.(3,1)B.(-1,1)C.(1,3)D.(1,-1)
【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.
【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,
1),
故选:A.
【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本
题的关键.
7.(3分)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()
A.AB.Ac.AD.2
4323
【分析】应用简单随机事件概率计算方法进行计算即可得出答案.
【解答】解:根据题意可得,
P(从中任取1本书是物理书)=工.
3
故选:B.
【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是
解决本题的关键.
8.(3分)如图,在。ABCZ)中,一定正确的是()
A.AD=CDB.AC=BDC.AB=CDD.CD=BC
【分析】根据平行四边形的性质即可得出答案.
【解答】解::四边形A8C。是平行四边形,
:.AB=CD,
故选:C.
【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问
题的关键.
9.(3分)点(1,yi),(2,”),(3,*),(4,必)在反比例函数y=且图象上,则yi,)*
x
y3,y4中最小的是()
A.yiB.y2C.”D.
【分析】根据4>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大
小关系可作判断.
【解答】解:,.乂=4>0,
.•.在第一象限内,),随x的增大而减小,
V(1,yi),(2,”),(3,”),(4,泗)在反比例函数y=4图象上,且1<2<3<4,
工泗最小.
故选:D.
【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题
的关键.
10.(3分)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与/•的关系式为
C=2nr.下列判断正确的是()
A.2是变量B.n是变量C.r是变量D.C是常量
【分析】根据变量与常量的定义进行求解即可得出答案.
【解答】解:根据题意可得,
在C=2m-中.2,n为常量,,是自变量,C是因变量.
故选:C.
【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题
的关键.
二、填空题:本大题共5小题,每小题3分,共15分.
11.(3分)sin30°=A.
一2一
【分析】熟记特殊角的三角函数值进行求解即可得出答案.
【解答】解:sin30°=上.
2
故答案为:-1.
2
【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解
决本题的关键.
12.(3分)单项式3外的系数为3.
【分析】应用单项式的定义进行判定即可得出答案.
【解答】解:单项式3孙的系数为3.
故答案为:3.
【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.
13.(3分)菱形的边长为5,则它的周长是20.
【分析】根据菱形的性质即可解决问题;
【解答】解::菱形的四边相等,边长为5,
.••菱形的周长为5X4=20,
故答案为20.
【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.
14.(3分)若x=l是方程/-2x+a=0的根,则a=1.
【分析】把x=l代入方程7-2x+a=0中,计算即可得出答案.
【解答】解:把x=l代入方程f-2x+a=0中,
得1-2+a=0,
解得4=1.
故答案为:1.
【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是
解决本题的关键.
15.(3分)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留TT)为TT.
【分析】应用扇形面积计算公式进行计算即可得出答案.
【解答】解:5=工.=2=90-X22「与
360360
故答案为:n.
【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可
得出答案.
三、解答题(一):本大题共3小题,每小题8分,共24分.
"Sx-2〉1
16.(8分)解不等式组:J.
x+l<3
【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【解答】解:俨乜>1①,
x+l<3(2)
由①得:x>\,
由②得:x<2,
...不等式组的解集为l<x<2.
【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.
2_1
17.(8分)先化简,再求值:a+a-1,其中。=5.
a-l
【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把〃的值代入计
算即可求出值.
【解答】解:原式=亘zl
a-l
22
a-a+a-l
a-1
_2a^~a~l
a-l
=(2a+l)(a-1)
a~l
=2a+l,
当”=5时,原式=10+1=11.
【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
18.(8分)如图,已知NAOC=NBOC,点尸在OC上,PDLOA,PELOB,垂足分别为
【分析】根据垂直的定义得到/O£>P=/OEP=90°,即可利用AAS证明
OPE.
【解答】证明::PO_LOA,PELOB,
:.NODP=NOEP=90°,
N4OC=NBOC,
:.ZDOP=ZEOP,
在△。尸。和△OPE中,
<Z0DP=Z0EP
•ZDOP=ZEOP>
OP=OP
.♦.△OP。/△OPE(AAS).
【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.
四、解答题(二):本大题共3小题,每小题9分,共27分.
19.(9分)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,
则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?
【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7
元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【解答】解:设学生有X人,该书单价y元,
根据题意得:俨于3,
(y-7x=4
解得:(x=7.
ly=53
答:学生有7人,该书单价53元.
【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组
是解题的关键.
20.(9分)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满
足函数关系y=fcr+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.
X025
y151925
(1)求y与x的函数关系式;
(2)当弹簧长度为20c机时,求所挂物体的质量.
【分析】(1)把x=2,y=19代入>=日+15中,即可算出k的值,即可得出答案;
(2)把),=20代入y=2x+15中,计算即可得出答案.
【解答】解:(1)把x=2,y=19代入y=fct+15中,
得19=2^+15,
解得:k=2,
所以y与x的函数关系式为y=2x+15(x20);
(2)把),=20代入y=2x+15中,
得20=2x+15,
解得:x=2.5.
所挂物体的质量为2.5口.
【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方
法进行求解是解决本题的关键.
21.(9分)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对
销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),
数据如下:
1047541054418835108
(1)补全月销售额数据的条形统计图.
(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均
月销售额(平均数)是多少?
(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少
合适?
【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整
图形;
(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;
(3)根据(2)中的结论进行分析即可得出答案.
【解答】解:(1)补全统计图,如图,
众数为:4(万元),中位数为:5(万元),平均数为:
3X1+4X4+5X3+7X1+8X2+10X3+18X』(万元),
15
(3)应确定销售目标为7万元,激励大部分的销售人员达到平均销售额.
【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计
图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.
五、解答题(三):本大题共2小题,每小题12分,共24分.
22.(12分)如图,四边形A8CZ)内接于。0,AC为。。的直径,ZADB^ZCDB.
(1)试判断△ABC的形状,并给出证明;
(2)若AB=&,AD=l,求CQ的长度.
【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;
(2)根据勾股定理解答即可.
【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:
为。。的直径,
:.ZADC=ZABC=90°,
ZADB=ZCDB,
:.AB=BC,
又;NABC=90°,
...△ABC是等腰直角三角形.
(2)在RtZXABC中,AB=BC=近,
:.AC=2,
在RtzXADC中,AQ=1,AC=2,
:.CD=G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新品推广合同
- 工程私人协议合同范本
- 建材购货合同范本简易
- 小产权借款合同范本
- 社区医院劳务合同范本
- 潍坊劳务用工合同范本
- 网页制作定制合同范本
- 影楼员工入股合同范本
- 统借统还借款合同范本
- 矿山资质转让合同范本
- 苏豪控股集团招聘笔试题库2025
- 山西省太原市某校2024-2025学年高一下学期3月月考数学试题
- 土地复垦方案范本
- T-CRHA 089-2024 成人床旁心电监测护理规程
- 黄豆苷元药理作用研究-深度研究
- 2025年全国企业员工全面质量管理知识竞赛题库(试题及答案)
- 2025年电信人工智能学习考试题库(含答案)
- 机器人焊接技术与应用考核试卷
- CNAS-CL01:2018 检测和校准实验室能力认可准则
- 中考名著《唐诗三百首》习题集
- 危险性较大的分部分项工程安全监理实施细则
评论
0/150
提交评论