2022年湖南省娄底市普通高校对口单招数学自考测试卷(含答案)_第1页
2022年湖南省娄底市普通高校对口单招数学自考测试卷(含答案)_第2页
2022年湖南省娄底市普通高校对口单招数学自考测试卷(含答案)_第3页
2022年湖南省娄底市普通高校对口单招数学自考测试卷(含答案)_第4页
2022年湖南省娄底市普通高校对口单招数学自考测试卷(含答案)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年湖南省娄底市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.A.B.C.D.

2.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0

3.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()A.

B.

C.

D.

4.A.(1,2)B.(-1,2)C.(-1,-2)D.(1,-2)

5.从1,2,3,4,5,6这6个数中任取两个数,则取出的两数都是偶数的概率是()A.1/3B.1/4C.1/5D.1/6

6.设集合={1,2,3,4,5,6,},M={1,3,5},则CUM=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U

7.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定

8.下列结论中,正确的是A.{0}是空集

B.C.D.

9.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限

10.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.

B.

C.

D.

11.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一个不等于0D.a,b,c中至少有一个等于0

12.A.-1B.0C.2D.1

13.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()

A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心

14.设a,b为正实数,则“a>b>1”是“㏒2a>㏒2b>0的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条

15.已知的值()A.

B.

C.

D.

16.A.B.C.

17.A.B.C.D.

18.贿圆x2/7+y2/3=1的焦距为()A.4

B.2

C.2

D.2

19.已知互为反函数,则k和b的值分别是()A.2,

B.2,

C.-2,

D.-2,

20.A.10B.-10C.1D.-1

二、填空题(10题)21.设A(2,-4),B(0,4),则线段AB的中点坐标为

22.

23.

24.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=

25.函数f(x)=sin2x-cos2x的最小正周期是_____.

26.已知那么m=_____.

27.

28.过点(1,-1),且与直线3x-2y+1=0垂直的直线方程为

29.Ig0.01+log216=______.

30.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.

三、计算题(5题)31.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

32.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

33.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

34.解不等式4<|1-3x|<7

35.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

四、简答题(10题)36.已知是等差数列的前n项和,若,.求公差d.

37.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

38.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

39.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

40.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

41.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

42.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

43.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

44.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

45.求证

五、证明题(10题)46.己知sin(θ+α)=sin(θ+β),求证:

47.

48.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

49.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

50.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

51.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

52.△ABC的三边分别为a,b,c,为且,求证∠C=

53.若x∈(0,1),求证:log3X3<log3X<X3.

54.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

55.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

六、综合题(2题)56.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

57.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

参考答案

1.C

2.D

3.C几何体的三视图.由题意知,俯视图的长度和宽度相等,故C不可能.

4.D

5.C本题主要考查随机事件及其概率.任取两数都是偶数,共有C32=3种取法,所有取法共有C62=15种,故概率为3/15=1/5.

6.A补集的运算.CuM={2,4,6}.

7.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。

8.B

9.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,

10.C

11.D

12.D

13.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,

14.A充要条件.若a>b>1,那么㏒2a>㏒2b>0;若㏒2a>㏒26>0,那么a>b>l

15.A

16.A

17.C

18.A椭圆的定义.因为a2=7,b2=3,所以c2-a2-b2=4,c=2,2c=4.

19.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.

20.C

21.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。

22.-7/25

23.2/5

24.72

25.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。

26.6,

27.π/4

28.

29.2对数的运算.lg0.01+lg216=lg1/100+㏒224=-2+4=2.

30.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.

31.

32.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

33.

34.

35.

36.根据等差数列前n项和公式得解得:d=4

37.

38.

39.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

40.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

41.x-7y+19=0或7x+y-17=0

42.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

43.

44.原式=

45.

46.

47.

48.

49.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

50.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

51.

∴PD//平面ACE.

52.

53.

54.

55.

56.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为

57.解:(1)斜率k=5/3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论