2022年黑龙江省绥化市普通高校对口单招数学月考卷(含答案)_第1页
2022年黑龙江省绥化市普通高校对口单招数学月考卷(含答案)_第2页
2022年黑龙江省绥化市普通高校对口单招数学月考卷(含答案)_第3页
2022年黑龙江省绥化市普通高校对口单招数学月考卷(含答案)_第4页
2022年黑龙江省绥化市普通高校对口单招数学月考卷(含答案)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年黑龙江省绥化市普通高校对口单招数学月考卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.已知{an}是等差数列,a1+a7=-2,a3=2,则{an}的公差d=()A.-1B.-2C.-3D.-4

2.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)

B.y=2sin(2x+π/3)

C.3;=2sin(2x-π/4)

D.3;=2sin(2x-π/3)

3.在△ABC中,A=60°,|AB|=2,则边BC的长为()A.

B.7

C.

D.3

4.公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.8

5.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定

6.直线以互相平行的一个充分条件为()A.以都平行于同一个平面

B.与同一平面所成角相等

C.平行于所在平面

D.都垂直于同一平面

7.已知集合M={0,1,2,3},N={1,3,4},那么M∩N等于()A.{0}B.{0,1}C.{1,3}D.{0,1,2,3,4}

8.函数y=sinx+cosx的最小值和最小正周期分别是()A.

B.-2,2π

C.

D.-2,π

9.设集合A={x|x≤2或x≥6},B={x||x-1|≤3},则为A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]

10.复数z=2i/1+i的共轭复数是()A.1+iB.1-iC.1/2+1/2iD.1/2-1/2i

11.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8

12.下列命题中,假命题的是()A.a=0且b=0是AB=0的充分条件

B.a=0或b=0是AB=0的充分条件

C.a=0且b=0是AB=0的必要条件

D.a=0或b=0是AB=0的必要条件

13.已知互为反函数,则k和b的值分别是()A.2,

B.2,

C.-2,

D.-2,

14.若f(x)=ax2+bx(ab≠0),且f(2)=f(3),则f(5)等于()A.1B.-1C.0D.2

15.已知函数f(x)=sin(2x+3π/2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为π

B.函数f(x)是偶函数

C.函数f(x)是图象关于直线x=π/4对称

D.函数f(x)在区间[0,π/2]上是增函数

16.A.B.C.D.

17.设l表示一条直线,α,β,γ表示三个不同的平面,下列命题正确的是()A.若l//α,α//β,则l//β

B.若l//α,l//β,则α//β

C.若α//β,β//γ,则α//γ

D.若α//β,β//γ,则α//γ

18.已知等差数列{an}的前n项和为Sn,a4=2,S10=10,则a7的值为()A.0B.1C.2D.3

19.设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be

20.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240

二、填空题(20题)21.己知两点A(-3,4)和B(1,1),则=

22.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.

23.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.

24.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.

25.

26.

27.

28.已知正实数a,b满足a+2b=4,则ab的最大值是____________.

29.

30.等差数列的前n项和_____.

31.

32.

33.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.

34.

35.

36.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.

37.

38.不等式的解集为_____.

39.函数的最小正周期T=_____.

40.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.

三、计算题(5题)41.解不等式4<|1-3x|<7

42.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

43.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

44.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

45.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

四、简答题(5题)46.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

47.求经过点P(2,-3)且横纵截距相等的直线方程

48.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

49.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

50.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

五、解答题(5题)51.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB

52.

53.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

54.

55.

六、证明题(2题)56.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

57.

参考答案

1.C等差数列的定义.a1+a7=a32d+a3+4d=2a3+2d,2a3+2d=-2,d=-3.

2.D三角函数图像性质.函数y=2sin(2x+π/6)的周期为π,将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期即π/4个单位,所得函数为y=2sin[2(x-π/4)+π/6]=2sin(2x-π/3)

3.C解三角形余弦定理,面积

4.A

5.A数值的大小判断

6.D根据直线与平面垂直的性质定理,D正确。

7.C集合的运算∵M={0,1,2,3},N={1,3,4},∴M∩N={1,3},

8.A三角函数的性质,周期和最值.因为y=,所以当x+π/4=2kπ-π/2k∈Z时,ymin=T=2π.

9.A由题可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。

10.B共轭复数的计算.z=2i/1+i=2i(1-i)f(1+i)(1-i)=1+i复数z=2i/1的共扼复数是1-i.

11.C

12.C

13.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.

14.C

15.C三角函数的性质.f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期为π,故A正确;易知函数f(x)是偶函数,B正确;由函数f(x)=-cos2x的图象可知,函数f(x)的图象关于直线x=π/4不对称,C错误;由函数f(x)的图象易知,函数f(x)在[0,π/2]上是增函数,D正确,

16.A

17.C

18.A

19.B不等式的性质。由不等式性质得B正确.

20.D

21.

22.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。

23.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3

24.-3或7,

25.-1

26.

27.33

28.2基本不等式求最值.由题

29.60m

30.2n,

31.-16

32.-4/5

33.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.

34.-2/3

35.45

36.45°,由题可知,因此B=45°。

37.{x|1<=x<=2}

38.-1<X<4,

39.

,由题可知,所以周期T=

40.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

41.

42.

43.

44.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

45.

46.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

47.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为

48.

49.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

50.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

51.

52.

53.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+34

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论