2023年江苏省泰州市普通高校对口单招数学自考预测试题(含答案)_第1页
2023年江苏省泰州市普通高校对口单招数学自考预测试题(含答案)_第2页
2023年江苏省泰州市普通高校对口单招数学自考预测试题(含答案)_第3页
2023年江苏省泰州市普通高校对口单招数学自考预测试题(含答案)_第4页
2023年江苏省泰州市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年江苏省泰州市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.已知i是虚数单位,则1+2i/1+i=()A.3-i/2B.3+i/2C.3-iD.3+i

2.A.B.C.D.R

3.已知a∈(π,3/2π),cosα=-4/5,则tan(π/4-α)等于()A.7B.1/7C.-1/7D.-7

4.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250

5.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60

6.下列双曲线中,渐近线方程为y=±2x的是()A.x2-y2/4=1

B.x2/4-y2=1

C.x2-y2/2=1

D.x2/2-y2=1

7.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过一定的时间后,再从该鱼池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中鱼的数量既不减少,也不增加),则鱼池中大约有鱼()A.120条B.1000条C.130条D.1200条

8.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一个不等于0D.a,b,c中至少有一个等于0

9.过点C(-3,4)且平行直线2x-y+3=0的直线方程是()A.2x-y+7=0B.2x+y-10=OC.2x-y+10=0D.2x-y-2=0

10.“x=1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

11.已知A(3,1),B(6,1),C(4,3)D为线段BC的中点,则向量AC与DA的夹角是()A.

B.

C.

D.

12.A.3

B.8

C.

13.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/3

14.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0

15.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)

16.直线x-y=0,被圆x2+y2=1截得的弦长为()A.

B.1

C.4

D.2

17.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.

B.

C.

D.

18.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°

19.A.B.C.

20.在空间中垂直于同一条直线的两条直线一定是()A.平行B.相交C.异面D.前三种情况都有可能

二、填空题(10题)21.双曲线x2/4-y2/3=1的虚轴长为______.

22.若x<2,则_____.

23.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.

24.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.

25.1+3+5+…+(2n-b)=_____.

26.圆x2+y2-4x-6y+4=0的半径是_____.

27.若,则_____.

28.

29.某程序框图如下图所示,该程序运行后输出的a的最大值为______.

30.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.

三、计算题(5题)31.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

32.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

33.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

34.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

35.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

四、简答题(10题)36.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。

37.已知的值

38.计算

39.化简

40.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

41.化简

42.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

43.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率

44.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

45.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值

五、证明题(10题)46.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

47.△ABC的三边分别为a,b,c,为且,求证∠C=

48.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

49.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

50.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

51.己知sin(θ+α)=sin(θ+β),求证:

52.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

53.

54.若x∈(0,1),求证:log3X3<log3X<X3.

55.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

六、综合题(2题)56.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

57.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

参考答案

1.B复数的运算.=1+2i/1+i=(1+2i)(1-i)f(1+i)(1-i)=l-i+2i-2i2/1-i2=3+i/2

2.B

3.B三角函数的计算及恒等变换∵α∈(π,3π/2),cosα=-4/5,∴sinα=-3/5,故tanα=sinα/cosα=3/4,因此tanα(π/4-α)=1-tanα/(1+tanα)=1/7

4.A分层抽样方法.样本抽取比70/3500=1/50例为该校总人数为1500+3500=5000,则=n/5000=1/50,∴n=100.

5.C

6.A双曲线的渐近线方程.由双曲线渐近线方程的求法知,双曲线x2-y2/4=1的渐近线方程为y=±2x

7.D抽样分布.设鱼池中大约有鱼M条,则120/M=10/100解得M=1200

8.D

9.C由于直线与2x-y+3=0平行,因此可以设直线方程为2x-y+k=0,又已知过点(-3,4)代入直线方程得2*(-3)-4+k=0,即k=10,所以直线方程为2x-y+10=0。

10.A充要条件的判断.若x=1,则x2-1=0成立.x2-1=0,则x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要条件.

11.C

12.A

13.C古典概型.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有1种:1,3;则要求的概率为1/6.

14.D

15.C函数的定义.x+1>0所以.x>-1.

16.D直线与圆相交的性质.直线x-y=0过圆心(0,0),故该直线被圆x2+y2=1所截弦长为圆的直径的长度2.

17.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。

18.C

19.A

20.D

21.2双曲线的定义.b2=3,.所以b=.所以2b=2.

22.-1,

23.3/5古典概型的概率公式.由题可得,取出红球的概率为2/2+n=2/5,所以n=3,即白球个数为3,取出白球的概率为3/5.

24.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。

25.n2,

26.3,

27.27

28.7

29.45程序框图的运算.当n=1时,a=15;当时,a=30;当n=3,a=45;当n=4不满足循环条件,退出循环,输出a=45.

30.15程序框图的运算.模拟程序的运行,可得k=11,n=1,S=1不满足条件S>11,执行循环体,n=2,S=3,不满足条件S>11,执行循环体,n=3,S=6,不满足条件S>11,执行循环体,n=4,S=10,不满足条件S>11,执行循环体,N=5,S=15,此时,满足条件S>11,退出循环,输出S的值为15.故答案为15.

31.

32.

33.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

34.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

35.

36.

∵μ//v∴(2x+1.4)=(2-x,3)得

37.

∴∴则

38.

39.sinα

40.x-7y+19=0或7x+y-17=0

41.

42.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

43.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

44.

45.

46.

47.

48.

∴PD//平面ACE.

49.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

50.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论