




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
济南市2022年九年级学业水平考试
数学试题
(试卷满分150分考试时间120分钟)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形
码粘贴在答题卡上的指定位置。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。答在试题卷上无效。
3.非选择题的作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。答在试
题卷上无效。
4.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。
选择题部分共48分
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只
有一项是符合题目要求的.)
1.-7的相反数是()
]_1
A.-7B.7C.D.--
77
,该几何体是()
A.圆柱B.球C.圆锥D.正四棱柱
3.神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4
月16日顺利返回.将数字356000用科学记数法表示为()
A.3.56xlO5B.0.356xl06C.3.56xl061).35.6xlO4
4.如图,AB\\CD,点E在AB上,EC平分NAED,若Nl=65。,则N2的度数为()
A45°B.50°C.57.5°D.65°
5.下列绿色能源图标中既是轴对称图形又是中心对称图形的是()
6.实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()
-3,-2-10'i23X
A.ab>0B.a+b>0C.同<网D.a+\<b+\
7.某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和
小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是()
1112
A-B.-C.-D.-
9633
8.若机一〃=2,则代数式竺士.卫-的值是()
mm+n
A-2B.2C.-4D.4
9.某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为
40m.如图所示,设矩形一边长为切b另一边长为冲b当无在一定范围内变化时,y随x的变化而变化,
则y与x满足的函数关系是()
/“//////////,////
x
y
A.正比例函数关系B.一次函数关系
C.反比例函数关系D.二次函数关系
10.如图,矩形488中,分别以A,C为圆心,以大于4AC的长为半径作弧,两弧相交于M,N两点,
2
作直线分别交AD,BC于点E,F,连接A尸,若BF=3,4E=5,以下结论错误的是()
A.AF=CFB.ZFAC=ZEACC.AB=4D.AC=2AB
11.数学活动小组到某广场测量标志性建筑48的高度.如图,他们在地面上C点测得最高点4的仰角为
22。,再向前70m至。点,又测得最高点A的仰角为58。,点C,D,8在同一直线上,则该建筑物AB的
高度约为()(精确到1m.参考数据:sin22°«0.37,tan22°«0.40,sin58°«0.85,
tan58°«1.6O)
C.37mD.46m
12.抛物线丁=一%2+2加彳_加2+2与),轴交于点(7,过点C作直线/垂直于y轴,将抛物线在y轴右侧的
部分沿直线/翻折,其余部分保持不变,组成图形G,点汽(m+1,%)为图形6上两点,
若M<>2,则根的取值范围是()
1
A.m<-l^m>0B<m<—C.0<m<V2D.—1<m<1
-42
非选择题部分共102分
二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案.)
13.因式分解:4+4〃+4=
14.如果小球在如图所示地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域
的概率是.
15.写出一个比起大且比J万小的整数
16.代数式一3^一与代数式——2的值相等,则》=.
x+2x-i
17.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,8。是矩形
4BC。的对角线,将△BC。分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两
图,若a=4,b=2,则矩形ABCQ的面积是.
18.规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表
示将它绕原点顺时针旋转90。,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:
如图,点0(0,0)按序列“011…”作变换,表示点。先向右平移一个单位得到0(1,0),再将«(1,0)绕
原点顺时针旋转90。得到。2(0,-1),再将。2(0,—1)绕原点顺时针旋转90°得到。3(-1,0)…依次类推.点
(0,1)经过“011011011”变换后得到点的坐标为
三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤
19.计算:|-3|-4sin300+V4
x-1X
①
20.解不等式组:,并写出它的所有整数解.
2x-5W3(x-2).②
21.已知:如图,在菱形ABC。中,E,尸是对角线AC上两点,连接DE,DF,ZADF=ZCDE.求证:
AE=CF.
22.某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛
成绩进行整理、描述和分析,部分信息如下:
a:七年级抽取成绩的频数分布直方图如图.(数据分成5组,50Vx<60,60Vx<70,70<x<80,
80<x<9(),90<x<100)
b:七年级抽取成绩在70vx<80这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,
79,79,79,79.
c:七、八年级抽取成绩的平均数、中位数如下:
年级平均数中位数
七年级76.5m
八年级78.279
请结合以上信息完成下列问题:
(1)七年级抽取成绩在60Wx<90的人数是,并补全频数分布直方图;
(2)表中机的值为;
(3)七年级学生甲和八年级学生乙竞赛成绩都是78,则(填“甲”或“乙”)的成绩在本年级
抽取成绩中排名更靠前;
(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.
23.已知:如图,AB为。。的直径,CO与。。相切于点C,交AB延长线于点Q,连接AC,BC,ND=
30°,CE平分/AC8交。。于点E,过点B作垂足为F.
(1)求证:CA—CD;
(2)若AB=12,求线段BF的长.
24.为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花
费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.
(1)求甲、乙两种树苗每棵的价格分别是多少元?
(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍,则购买甲、乙两
种树苗各多少棵时花费最少?请说明理由.
25.如图,一次函数y=:x+l的图象与反比例函数y=&(x>0)的图象交于点A(a,3),与y轴交于点
2%
(1)求氏的值;
(2)直线CZ)过点A,与反比例函数图象交于点C,与x轴交于点。,AC=AD,连接CB.
①求△ABC的面积;
②点P在反比例函数的图象上,点。在x轴上,若以点A,B,P,。为顶点的四边形是平行四边形,请求
出所有符合条件的点P坐标.
26.如图1,AABC是等边三角形,点。在AABC的内部,连接AO,将线段A。绕点A按逆时针方向旋转
60°,得到线段AE,连接BO,DE,CE.
(1)判断线段与CE的数量关系并给出证明;
(2)延长即交直线8c于点F.
①如图2,当点F与点8重合时,直接用等式表示线段AE,BE和CE的数量关系为;
②如图3,当点尸为线段8C中点,且E£>=EC时,猜想N54O的度数,并说明理由.
27.抛物线y=ax2+?x—6与x轴交于A&0),8(8,0)两点,与y轴交于点C,直线尸履一6经过点
艮点P在抛物线上,设点P的横坐标为,
(1)求抛物线的表达式和f,上的值;
(2)如图1,连接AC,AP,PC,若AAPC是以CP为斜边的直角三角形,求点尸的坐标;
(3)如图2,若点尸在直线BC上方的抛物线上,过点P作垂足为Q,求CQ+gpQ的最大
值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只
有一项是符合题目要求的.)
1.-7的相反数是()
II
A.-7B.7C.-D.--
77
【答案】B
【解析】
【分析】据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.
【详解】解:根据概念,-7的相反数是7.
故选:B.
【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数
是负数,一个负数的相反数是正数,。的相反数是0.
2.如图是某几何体的三视图,该几何体是()
A.圆柱B.球C.圆锥D.正四棱柱
【答案】A
【解析】
【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
【详解】解:主视图和左视图都是长方形,那么此几何体为柱体,由俯视图为圆,可得此几何体是圆柱.
故选:A.
【点睛】此题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体.
3.神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4
月16日顺利返回.将数字356000用科学记数法表示为()
A.3.56xio5B.0.356X106C.3.56xl06D.35.6xlO4
【答案】A
【解析】
【分析】用科学记数法表示较大的数时,一般形式为“X10",其中〃为整数,且〃比原来的
整数位数少1,据此判断即可.
【详解】解:356000=3.56X105.
故选:A.
【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为"X10",其中1<同<10,确定“与〃
的值是解题的关键.
4.如图,A8||CO,点E在AB上,EC平分/AED,若Nl=65。,则N2的度数为()
A.45°B.50°C.57.5°D.65°
【答案】B
【解析】
【分析】根据平行线及角平分线的性质即可求解.
【详解】解:;AB//CD,
.•.NAEC=/1(两直线平行,内错角相等),
:EC平分NAEO,
.,.ZA£C=ZC£D=Z1,
・21=65。,
AZCED=Z1=65°,
/2=180°-ZCED-N1=180°-65°-65°=50°.
故选:B.
【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得
出答案.
5.下列绿色能源图标中既是轴对称图形又是中心对称图形的是()
【答案】B
【解析】
【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解,把一个图形绕某一点旋转
180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一
条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;
B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不合题意;
D、是轴对称图形,不是中心对称图形,故本选项不合题意.
故选:B.
【点睛】本题考查了中心对称图形以及轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分
折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.
6.实数a,6在数轴上对应点的位置如图所示,下列结论正确的是()
.q...b...»
-3-2-10123
A.ab>0B.a+b>0C.|«|<|^|D.a+l<b+l
【答案】D
【解析】
【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.
【详解】解:根据图形可以得到:
—3<。v—2v(),0<Z?<19
<0,故A项错误,
故B项错误,
\a\>\b\,故C项错误,
a+l<b+l,故D项错误.
故选:D.
【点睛】本题考查了数轴与实数的关系,理解并正确运用是解题的关键.
7.某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和
小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是()
112
B.6-3-D.3-
【答案】c
【解析】
【分析】画树状图,共有9种等可能的结果,其中小明和小刚恰好选择同一个主题结果有3种,再由概率
公式求解即可.
【详解】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,
画树状图如下:
开始
ABC
/N小
ABCABCABC
共有9种等可能的结果,其中小明和小刚恰好选择同一个主题的结果有3种,
31
小明和小刚恰好选择同一个主题的概率为X=-.
93
故选:C.
【点睛】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或
两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
8.若用一〃=2,则代数式的值是()
mm+n
A.-2B.2C.-4D.4
【答案】D
【解析】
【分析】先因式分解,再约分得到原式=2(〃?-〃),然后利用整体代入的方法计算代数式的值.
5―二(m+n)(m—n)2m
【详解】解:原式-------------------------
mm+n
=2(m-n),
当,x-”=2时,原式=2X2=4.
故选:D.
【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的
值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的
结果要化成最简分式或整式.
9.某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为
40m.如图所示,设矩形一边长为X”?,另一边长为当x在一定范围内变化时,y随x的变化而变化,
则y与x满足的函数关系是()
〃/、〃/〃/////,//、//
x
y
A.正比例函数关系B.一次函数关系
C.反比例函数关系D.二次函数关系
【答案】B
【解析】
【分析】根据矩形周长找出关于x和y的等量关系即可解答.
【详解】解:根据题意得:
2x+y=40,
y—2.x+40,
与x满足的函数关系是一次函数;
故选:B.
【点睛】本题通过矩形的周长考查一次函数的定义,解题的关键是理清实际问题中的等量关系准确地列
式.
10.如图,矩形4BCD中,分别以A,C为圆心,以大于'AC的长为半径作弧,两弧相交于M,N两点,
2
作直线MN分别交A£),BC于点E,F,连接AF,若BF=3,AE=5,以下结论毛肯集的是()
A.AF=CFB.ZFAC=ZEACC.AB=4D.AC=2AB
【答案】D
【解析】
【分析】根据作图过程可得,MN是AC垂直平分线,再由矩形的性质可以证明八4P。0△CEO,
可得AF=CE=AE=5,再根据勾股定理可得AB的长,即可判定得出结论.
【详解】解:A,根据作图过程可得,MN是AC的垂直平分线,
AF=CF,
故此选项不符合题意.
B,如图,
由矩形的性质可以证明^AFO^ACEO,
AE=CF,
FA=FC,
:.AE=AF,
;MN是AC的垂直平分线,
ZFAC=ZEAC,
故此选项不符合题意.
C,•/AE=5,
:.AF=AE=5,
在Rt^ABF中
,;BF=3,
AB=y/AF2-BF2=752-32=4,
故此选项不符合题意.
D,•.•BC=BF+FC=3+5=8,
AC=^ABr+BC1=V42+82=4技
•.■AB=4,
/.AC2AB.
故此选项符合题意.
故选:D.
【点睛】本题考查了作图-基本作图,线段垂直平分线的性质、矩形的性质、勾股定理,解决本题的关键是
掌握基本作图方法.
11.数学活动小组到某广场测量标志性建筑AB高度.如图,他们在地面上C点测得最高点4的仰角为
22°,再向前70m至。点,又测得最高点A的仰角为58。,点C,D,8在同一直线上,则该建筑物AB的
高度约为()(精确到1m.参考数据:sin22°®0.37,tan22°»0.40.sin58°«0.85,
tan58°a1.60)
CDB
A.28mB.34mC.37mD.46m
【答案】C
【解析】
【分析】在々△A8O中,解直角三角形求出08=*在RAABC中,解直角三角形可求出48.
8
【详解】解:在/?柩48。中,tan/AO8=——,
DB
DB=-AB-®A"
tan58°1.68
〜》AB
在放“BC中,tanZACB=—
CB
.tan22°=--------«0.4
70+,AB'
8
解得:=—«37m,
3
故选:C.
【点睛】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键.
12.抛物线了=-丁+2处-机2+2与),轴交于点C,过点C作直线/垂直于y轴,将抛物线在y轴右侧的
部分沿直线/翻折,其余部分保持不变,组成图形G,点"(〃?+1,乃)为图形6上两点,
若,则根的取值范围是()
A.ni<—1或7??>0B.mC.0<m<>/2,D--1<w<1
【答案】D
【解析】
【分析】求出抛物线的对称轴、C点坐标以及当4处1和广,"+1时的函数值,再根据〃7-1<〃?+1,判断出
M点在N点左侧,此时分类讨论:第一种情况,当N点在y轴左侧时,第二种情况,当M点在y轴的右侧
时,第三种情况,当y轴在M、N点之间时,来讨论,结合图像即可求解.
【详解】抛物线解析式丁=一/+2,放一机2+2变形为:y=2一(了一“)2,
即抛物线对称轴为x=机,
当x=/n-l时,Wy=2-{m-\-m)2=1,
当x=m+l时、有y=2-(m+1-,〃)2=1,
设为A点,(m+1,1)为B点,
即点与B(〃z+l,l)关于抛物线对称轴对称,
当户0时,有y=2-(0-相>=2-根2,
.••C点坐标为(0,22),
当x=〃?时,有y=2—(“一加了=2,
抛物线顶点坐标为(见2),
•••直线轴,
...直线/为y=2-〃?2,
点在N点左侧,
此时分情况讨论:
第一种情况,当N点在y轴左侧时,如图,
由图可知此时M、N点分别对应A、B点,即有%=必=1,
,此时不符合题意:
第二种情况,当M点在y轴的右侧时,如图,
...此时不符合题意;
...此时符合题意;
此时由图可知:m-KO</n+l,
解得-IV/nVl,
综上所述:,”的取值范围为:
故选:D.
【点睛】本题考查了二次函数的图像与性质、翻折的性质,注重数形结合是解答本题的关键.
非选择题部分共102分
二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案.)
13.因式分解:4+40+4=_____.
【答案】(a+2)2
【解析】
【分析】原式利用完全平方公式分解即可.
【详解】解:a2+4a+4=(a+2)2.
故答案为:(a+2)\
【点睛】此题考查了公式法的运用,熟练掌握因式分解的方法是解本题的关键.
14.如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域
的概率是.
4
【答案】-
【解析】
【分析】根据题意可得一共有9块方砖,其中阴影区域的有4块,再根据概率公式计算,即可求解.
【详解】解:根据题意得:一共有9块方砖,其中阴影区域的有4块,
4
•••它最终停留在阴影区域的概率是一.
9
4
故答案为:—
【点睛】本题考查了概率公式:熟练掌握随机事件4的概率P(A)=事件A可能出现的结果数除以所有可
能出现的结果数:P(必然事件)=1;P(不可能事件)=0是解题的关键.
15.写出一个比0大且比如小的整数.
【答案】3(答案不唯一)
【解析】
【分析】先对、回和J百进行估算,再根据题意即可得出答案.
【详解】解:<2<3V4<M<5,
.•.比0大且比J万小的整数有2,3,4.
故答案为:3(答案不唯一).
【点睛】此题考查了估算无理数的大小,估算出、份与J万是解题的关键.
32
16.代数式•^与代数式——的值相等,则尤=.
x+2x-1
【答案】7
【解析】
【分析】根据题意列出分式方程,求出方程的解,得到x的值即可.
32
【详解】解:・・•代数式二一与代数式——的值相等,
%+2x-1
32
••—,
x+2x—1
去分母
3(x—l)=2(x+2),
去括号号
3x-3=2x+4,
解得x=7,
检验:当x=7时;(x+2)(x—l)00,
.♦•分式方程的解为x=7.
故答案为:7.
【点睛】本题考查了解分式方程,利用了转化思想,解分式方程注意要检验.
17.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,8。是矩形
ABC。的对角线,将△BCO分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两
图,若a=4,b=2,则矩形A8CD的面积是.
图1图2
【答案】16
【解析】
【分析】设小正方形的边长为x,利用〃、b、x表示矩形的面积,再用b、x表示三角形以及正方形
的面积,根据面积列出关于〃、x的关系式,解出x,即可求出矩形面积.
【详解】解:设小正方形的边长为x,
,矩形的长为(a+x),宽为(O+x),
由图1可得:g(a+x)(Z?+x)=gaxx2+;bxx2+x2
整理得:x2+ax+bx-ab=O'
,.,a=4,b=2,
x2+6x-8=0>
x2+6x=8>
矩形的面积为(a+x)e+x)=(x+4)(x+2)=f+6x+8=8+8=16.
故答案为:16.
【点睛】本题主要考查列代数式,一元二次方程的应用,求出小正方形的边长是解题的关键.
18.规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表
示将它绕原点顺时针旋转90。,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:
如图,点o(o,o)按序列“oil…”作变换,表示点o先向右平移一个单位得到a(i,o),再将a(i,o)绕
原点顺时针旋转90。得到a(o,-i),再将o2(o,-i)绕原点顺时针旋转90。得到q(T,O)…依次类推.点
(0,1)经过“011011011”变换后得到点的坐标为
【答案】(-1,-1)
【解析】
【分析】根据题意得出点(0,1)坐标变化规律,进而得出变换后的坐标位置,进而得出答案.
【详解】解:点(0,1)按序列“011011011”作变换,表示点(0,1)先向右平移一个单位得到(1,1),再将
(1,1)绕原点顺时针旋转90。得到,再将。,一1)绕原点顺时针旋转90。得到(―1,一1),然后右平移一
个单位得到1),再将(0,-1)绕原点顺时针旋转90。得到(-1,0),再将(-1,0)绕原点顺时针旋转90°
得到(0,1),然后右平移一个单位得到(1,1),再将(1,1)绕原点顺时针旋转90。得到(1,一1),再将(1,—1)绕
原点顺时针旋转90。得到(一1,一1).
故答案为:(―1,—1)
【点睛】此题主要考查了点的坐标变化规律,得出点坐标变化规律是解题关键.
三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤
19.计算:卜|3—4sin30°+VZ+—.
【答案】6
【解析】
【分析】先根据绝对值的意义,特殊角的三角函数值,负整数指数幕,算术平方根定义进行化简,然后再
进行计算即可.
【详解】解:|-3|-4sin30°+V4+l
=3…—4x-11-c2+—1
21
3
=3—2+2+3
-6
【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,特殊角的三角函数值,负整数指数
基,算术平方根定义,是解题的关键.
X-lX个
20.解不等式组:123,并写出它的所有整数解.
2x-5<3(x-2).②
【答案】l〈x<3,整数解为1,2
【解析】
【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而确定
出整数解即可.
【详解】解不等式①,得x<3,
解不等式②,得xNl,
在同一条数轴上表示不等式①②的解集
—I----1-----<-----1--------«—►
-101234
原不等式组的解集是l〈x<3,
...整数解为1,2.
【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是
解本题的关键.
21.已知:如图,在菱形ABCO中,E,尸是对角线AC上两点,连接。E,DF,NADF=NCDE.求证:
AE=CF.
【答案】见解析
【解析】
【分析】根据菱形的性质得出=DC,NDAC=NDC4,再利用角的等量代换得出
ZADE=ZCDF,接着由角边角判定△/ME也△Ob,最后由全等的性质即可得出结论.
【详解】解::四边形ABCO是菱形,E,F是对角线AC上两点,
:.DA=DC,ZDAC=ZDCA.
':ZADF=NCDE,
,ZADF-NEDF=ZCDE-ZEDF,
即NADE=NCD厂.
ZDAC=ZDCA
在△DAE和△OCT7中,<D4=℃,
NADE=NCDF
^DAE^DCF(ASA),
AE=CF.
【点睛】本题考查菱形的性质,全等三角形的判定和性质,解题的关键是熟练地掌握这些性质和判定定
理,并能从题中找到合适的条件进行证明.
22.某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛
成绩进行整理、描述和分析,部分信息如下:
。:七年级抽取成绩的频数分布直方图如图.(数据分成5组,50<x<60,60<x<70,70<x<80,
80<x<90,90<x<100)
b:七年级抽取成绩在7()«x<80这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,
79,79,79,79.
c:七、八年级抽取成绩的平均数、中位数如下:
年级平均数中位数
七年级76.5m
八年级78.279
请结合以上信息完成下列问题:
(1)七年级抽取成绩在60Sx<90的人数是,并补全频数分布直方图;
(2)表中机的值为;
(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则(填“甲”或“乙”)的成绩在本年级
抽取成绩中排名更靠前;
(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.
【答案】(1)38,理由见解析
(2)77(3)甲
(4)七年级竞赛成绩90分及以上人数约为64人
【解析】
【分析】(1)根据题意及频数分布直方图即可得出结果:
(2)根据中位数的计算方法求解即可;
(3)由七八年级中位数与甲乙学生成绩的比较即可得出结果;
(4)用总人数乘以七年级竞赛成绩90分及以上的学生人数占总的人数的比例求解即可.
【小问1详解】
解:由题意可得:708<80这组的数据有16人,
七年级抽取成绩在603<90的人数是:12+16+10=38人,
故答案为:38;补全频数分布直方图如图所示;
【小问2详解】
...七年级中位数在70%<80这组数据中,
...第25、26的数据分别为77,77,
77+77
/.m-----------77,
2
故答案为:77;
【小问3详解】
解:•..七年级学生的中位数为77<78,八年级学生的中位数为79>78,
...甲的成绩在本年级抽取成绩中排名更靠前,
故答案为:甲;
【小问4详解】
Q
解:400x2=64(人)
50
答:七年级竞赛成绩90分及以上人数约为64人.
【点睛】题目主要考查统计的相关应用,包括频数分布直方图及用部分估计总体、中位数的求法等,理解
题意,综合运用这些知识点是解题关键.
23.己知:如图,A8为。。的直径,与。。相切于点C,交A8延长线于点£>,连接AC,BC,ZD=
30°,CE平分NACB交(D。于点E,过点B作B尸,CE,垂足为凡
(1)求证:CA=CD;
(2)若AB=12,求线段8F的长.
【答案】(1)见解析(2)3亚
【解析】
【分析】(1)连接OC,欲证明CA=CC,只要证明NC4£)=NCZM即可.
(2)因为为直径,所以NACB=90。,可得出三角形CBF为等腰直角三角形,即可求出8F,由此即
可解决问题.
【小问1详解】
证明:连接OC
•.•co与OO相切于点C,
:.OC±CD,
:.NOCD=90。,
,/ZOM=30o,
:./COB=90°-ZCDA=60°,
;BC所对的圆周角为NCR,圆心角为NCO3,
NC4B」NCOB=30°,
2
ZCAD=ZCDA,
CA-CD.
【小问2详解】
;AB为直径,
ZACB=90°,
在RfAABC中,NC4B=30°,43=12,
BC——AB=6,
2
,ZCE平分NAC8,
NECB=-ZACB=45°,
2
BFA.CE,
ZCFB=9Q°,
【点睛】本题考查切线的性质,圆周角定理、解直角三角形等知识,解题的关键是灵活运用这些知识解决
问题,学会条件常用辅助线,属于中考常考题型.
24.为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花
费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.
(1)求甲、乙两种树苗每棵的价格分别是多少元?
(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍,则购买甲、乙两
种树苗各多少棵时花费最少?请说明理由.
【答案】(1)甲种树苗每棵4()元,乙种树苗每棵30元
(2)当购买甲种树苗25棵,乙种树苗75棵时,花费最少,理由见解析
【解析】
【分析】(1)设每棵甲种树苗的价格为x元,每棵乙种树苗的价格y元,由“购买20棵甲种树苗和16棵
乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元”列出方程组,求解即可;
(2)设购买甲种树苗加棵,则购买乙种树苗(100-〃。棵,购买两种树苗总费用为W元得出一次函数,
根据一次函数的性质求解即可.
【小问1详解】
设甲种树苗每棵x元,乙种树苗每棵V元.
20x+16y—1280fx=40
由题意得,\S,解得《〃,
x-y=103=30
答:甲种树苗每棵40元,乙种树苗每棵30元.
【小问2详解】
设购买甲种树苗棵,则购买乙种树苗(1(X)一根)棵,购买两种树苗总费用为W元,
由题意得W=40m+30(100-m),W=10/^+3000.
由题意得100-加43加,解得〃z225,
因为W随加的增大而增大,所以当相=25时W取得最小值.
答:当购买甲种树苗25棵,乙种树苗75棵时,花费最少.
【点睛】本题考查了一次函数的应用,二元一次方程组的应用,找到正确的数量关系是本题的关键.
25.如图,一次函数y=-x+l的图象与反比例函数y=±(x>0)的图象交于点4(a,3),与y轴交于点
2x
(2)直线C。过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.
①求△ABC的面积;
②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,。为顶点的四边形是平行四边形,请求
出所有符合条件的点尸坐标.
【答案】(1)。=4,%=12;
(2)①8;②符合条件的点P坐标是(6,2)和(3,4).
【解析】
【分析】(1)将点A(a,3)代入y=gx+l,求出a=4,即可得A(4,3),将点A(4,3)代入y=:,即
可求出k;
(2)①如图,过A作轴于点“,过C作。V_Lx轴于点N,交A8于点£,求出C(2,6),
£(2,2),得到C£,进一步可求出AABC的面积;②设尸(%,y),。(9,0).分情况讨论:i、当四边形
ABQP为平行四边形时,ii、当四边形AP8Q为平行四边形时,计算即可.
小问1详解】
解:将点4(。,3)代入丁=;》+1,得。=4,4(4,3),
将点A(4,3)代入y=&,得左=4x3=12,
X
反比例函数的解析式为y=—.
X
【小问2详解】
解:①如图,过A作AMJ_x轴于点“,过。作OV_Lx轴于点N,交A8于点E,
:.AM//CN,
":AC=AD,
.AMDAI
"~CN^~DC~2'
:.CN=6,
•v_12_o
c6
.-.C(2,6),
£(2,2),
,CE=6—2=4,
•,•SAABC=&ACE+SABCE=gx4x2+gx4x2=8•
②分两种情况:设尸&,y),。(毛,0).
i>如图,当四边形为平行四边形时,
•••点B向下平移1个单位、向右平移々个单位得到点。,
.••点A向下平移1个单位,向右平移々个单位得到点P,
=3-1=2,玉=£=6,
P(6,2).
ii、如图,当四边形APBQ为平行四边形时,
•••点Q向上平移1个单位,向左平移4个单位得到点B,
点A向上平移I个单位,向左平移X1个单位得到点P,
=3+1=4,内=昔=3,
p(3,4).
综上所述,符合条件的点P坐标是(6,2)和(3,4).
【点睛】本题考查一次函数与反比例函数的综合,待定系数法求函数解析式,平行四边形的性质,解题的
关键是掌握待定系数法求函数解析式,平行四边形的性质.
26.如图1,AABC是等边三角形,点。在AABC的内部,连接AO,将线段AO绕点A按逆时针方向旋转
60°,得到线段AE,连接B。,DE,CE.
(1)判断线段80与CE的数量关系并给出证明;
(2)延长EO交直线BC于点凡
①如图2,当点尸与点2重合时,直接用等式表示线段AE,8E和CE的数量关系为;
②如图3,当点F为线段8C中点,且EZ)=EC时,猜想NBA。度数,并说明理由.
【答案】(1)BD=CE,理由见解析
⑵①BE=AE+CE;②N8W=45°,理由见解析
【解析】
【分析】(1)利用等边三角形的性质和旋转的性质易得到△/^^△ACE(SAS),再由全等三角形的
性质求解;
(2)①根据线段AO绕点A按逆时针方向旋转60°得到AE得到AADE是等边三角形,
由等边三角形的性质和(1)的结论来求解;②过点A作4G_LM于点G,连接AF,根据等边三角形的
\rzAp
性质和锐角三角函数求值得到N84尸=NOAG,一——,进而得到△B40SAR4G,进而求出
ADAB
ZADB=90°,结合=ED=EC得到80=AT>,再用等腰直角三角形的性质求解.
【小问1详解】
解:BD=CE.
证明:•••△ABC是等边三角形,
/.AB=AC,Za4C=60°.
•.•线段AD绕点A按逆时针方向旋转60°得到AE,
AAD=AE,Z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一钢琴活动策划方案
- 液氯库考试试题及答案
- 兰州便利店开业活动方案
- 共青团植树节活动方案
- 天车司机安全试题及答案
- 天津安全员证题库题目及答案
- 面试题及答案分钟
- 压力焊考试试题及答案
- 关于兴趣类小组活动方案
- 关于售后活动方案
- 高一语文暑假讲义-初高衔接06:阅读基本功句子含义的理解(教师版)
- 税收政策与社会公平分配问题探讨-洞察分析
- 2025届安徽省合肥市重点中学中考二模生物试题含解析
- 森林生态旅游与康养基础知识单选题100道及答案
- DB33T 2239-2020 经颅磁刺激戒毒康复应用管理规范
- 2025年陕西锌业有限公司招聘笔试参考题库含答案解析
- 露营地自然灾害应急预案
- 医疗损害责任民法典
- 品管圈PDCA大赛作品-普外科提高腹腔镜术后24小时内肠道通气率医院品质管理案例
- 智能交通信号控制系统维护方案
- 实验室生物安全委员会及职责
评论
0/150
提交评论