考点10二次函数_第1页
考点10二次函数_第2页
考点10二次函数_第3页
考点10二次函数_第4页
考点10二次函数_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点10二次函数课标对考点的要求对二次函数问题,中考命题需要满足下列要求:(1)通过对实际问题的分析,体会二次函数的意义。(2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。(3)会用配方法将数字系数的二次函数的表达式化为的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。(4)会利用二次函数的图像求一元二次方程的近似解。(5)*知道给定不共线三点的坐标可以确定一个二次函数。重要考点解读一、二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.三、二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y=ax2+bx+c(a,b,c是常数,a≠0)对称轴x=–顶点(–,)a的符号a>0a<0图象开口方向开口向上开口向下最值当x=–时,y最小值=当x=–时,y最大值=最点抛物线有最低点抛物线有最高点增减性当x<–时,y随x的增大而减小;当x>–时,y随x的增大而增大当x<–时,y随x的增大而增大;当x>–时,y随x的增大而减小2.二次函数图象的特征与a,b,c的关系字母的符号图象的特征aa>0开口向上a<0开口向下bb=0对称轴为y轴ab>0(a与b同号)对称轴在y轴左侧ab<0(a与b异号)对称轴在y轴右侧cc=0经过原点c>0与y轴正半轴相交c<0与y轴负半轴相交四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h)2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.六、二次函数的综合1、函数存在性问题:解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.重要问题解题思维方法总结一、对二次函数的有关概念的深刻把握1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.3.二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.二、对二次函数的图象关键点的说明二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.三、二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.四、二次函数的平移1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关.2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.3.抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(x–h)2+k的顶点是(h,k).4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.五、对二次函数与一元二次方程、不等式的综合问题的处理抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定.1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).六、二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.考察背景主要有:经济问题;物体运动轨迹问题;拱桥问题等七、存在性问题与动点问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.中考典例解析【例题1】(2021贵州毕节)如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是()A.abc>0 B.b2>4ac C.4a+2b+c>0 D.2a+b=0【答案】C【解析】利用函数图象的开口,与y轴交点坐标,和对称轴,分别判断出a,b,c的正负,可以判断出A选项,由抛物线与x轴交点坐标个数,可以判断Δ=b2﹣4ac的正负,可以判断出B选项,又当x=2时,y=4a+2b+c,根据图象可以判断C选项,由对称轴为x=1,可以判断D选项.【解答】解:由图象可得,抛物线开口向上,故a>0,由于抛物线与y轴交点坐标为(0,c),由图象可得,c<0,对称轴为x=,∴,∴b=﹣2a,∵a>0,∴b<0,∴abc>0,故A选项正确;∵抛物线与x轴有两个交点,∴Δ=b2﹣4ac>0,∴b2>4ac,故B选项正确;由图象可得,当x=2时,y<0,∴4a+2b+c<0,故C选项错误;∵抛物线的对称轴为x=1,∴,∴2a+b=0,故D选项正确,故选:C.【例题2】(2021哈尔滨)二次函数y=﹣3x2﹣2的最大值为.【答案】﹣2.【分析】根据函数关系式,求出顶点坐标,再根据开口向下,求出最大值.【解答】解:在二次函数y=﹣3x2﹣2中,∵顶点坐标为(0,﹣2),且a=﹣3<0,∴抛物线开口向下,∴二次函数y=﹣3x2﹣2的最大值为﹣2.【例题3】(2021无锡)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y=ax2+2x+c的图象于点E.(1)求二次函数的表达式;(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.【答案】见解析。【解析】(1)由y=﹣x+3得B(3,0),C(0,3),代入y=ax2+2x+c即得二次函数的表达式为y=﹣x2+2x+3;(2)由y=﹣x2+2x+3得A(﹣1,0),OB=OC,AB=4,BC=3,故∠ABC=∠MFB=∠CFE=45°,以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,设E(m,﹣m2+2m+3),则F(m,﹣m+3),EF=﹣m2+3m,CF=m,①△ABC∽△CFE时,=,可得EF=,②△ABC∽△EFC时,=,可得EF=;(3)连接NE,由点N、F关于直线EC对称,可得CF=EF=CN,故﹣m2+3m=m,解得m=0(舍去)或m=3﹣,即得CN=CF=m=3﹣2,N(0,3+1).解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴B(3,0),C(0,3),把B(3,0),C(0,3)代入y=ax2+2x+c得:,解得,∴二次函数的表达式为y=﹣x2+2x+3;(2)如图:在y=﹣x2+2x+3中,令y=0得x=3或x=﹣1,∴A(﹣1,0),∵B(3,0),C(0,3),∴OB=OC,AB=4,BC=3,∴∠ABC=∠MFB=∠CFE=45°,∴以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,设E(m,﹣m2+2m+3),则F(m,﹣m+3),∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,CF==m,①△ABC∽△CFE时,=,∴=,解得m=或m=0(舍去),∴EF=,②△ABC∽△EFC时,=,∴=,解得m=0(舍去)或m=,∴EF=,综上所述,EF=或.(3)连接NE,如图:∵点N、F关于直线EC对称,∴∠NCE=∠FCE,CF=CN,∵EF∥y轴,∴∠NCE=∠CEF,∴∠FCE=∠CEF,∴CF=EF=CN,由(2)知:设E(m,﹣m2+2m+3),则F(m,﹣m+3),EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,CF==m,∴﹣m2+3m=m,解得m=0(舍去)或m=3﹣,∴CN=CF=m=3﹣2,∴N(0,3+1).考点问题综合训练一、选择题1.(2021福建)二次函数的图象过四个点,下列说法一定正确的是()A.若,则 B.若,则C.若,则 D.若,则【答案】C【解析】求出抛物线对称轴,根据抛物线的开口方向和增减性,根据横坐标的值,可判断出各点纵坐标值的大小关系,从而可以求解.【详解】解:二次函数的对称轴为:,且开口向上,距离对称轴越近,函数值越小,,A,若,则不一定成立,故选项错误,不符合题意;B,若,则不一定成立,故选项错误,不符合题意;C,若,所以,则一定成立,故选项正确,符合题意;D,若,则不一定成立,故选项错误,不符合题意;【点睛】本题考查了二次函数的图象与性质及不等式,解题的关键是:根据二次函数的对称轴及开口方向,确定各点纵坐标值的大小关系,再进行分论讨论判断即可.2.(2021湖北恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①abc>0;②4a+2b+c>0;③若y≥c,则x≤﹣2或x≥0;④b+c=m.其中正确的有()个.A.1 B.2 C.3 D.4【答案】B【解析】①由抛物线的开口方向、对称轴以及与y轴的交点,可得a、b、c的符号,进而可得abc的符号,结论①错误;②由抛物线与x轴交于(﹣3,0),顶点是(﹣1,m),可判断出抛物线与x轴的另一个交点为(1,0),当x=2时,y=4a+2b+c>0,结论②正确;③由题意可知对称轴为:直线x=﹣1,即,得b=2a,把y=c,b=2a代入y=ax2+bx+c并化简得:x2+2x=0,解得x=0或﹣2,可判断出结论③正确;④把(﹣1,m),(1,0)代入y=ax2+bx+c并计算可得b=,由对称轴可得b=2a,∴a=,由a+b+c=0可得c=,再计算b+c的值,可判断④错误.解:①∵抛物线开口向上,对称轴在y轴左边,与y轴交于负半轴,∴a>0,b>0,c<0,∴abc<0,故结论①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),∴抛物线与x轴的另一个交点为(1,0),∵抛物线开口向上,∴当x=2时,y=4a+2b+c>0,故结论②正确;③由题意可知对称轴为:直线x=﹣1,∴x=,∴b=2a,把y=c,b=2a代入y=ax2+bx+c得:ax2+2ax+c=c,∴x2+2x=0,解得x=0或﹣2,∴当y≥c,则x≤﹣2或x≥0,故结论③正确;④把(﹣1,m),(1,0)代入y=ax2+bx+c得:a﹣b+c=m,,a+b+c=0,∴b=,∵b=2a,∴a=,∵抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,∴c=,∴b+c=,故选:B.3.(2021江西)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【答案】D【解析】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a>0、b>0、c<0,由此即可得出:二次函数y=ax2﹣bx+c的图象开口向上,对称轴x=﹣<0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.解:观察函数图象可知:a>0,b>0,c<0,∴二次函数y=ax2﹣bx+c的图象开口向上,对称轴x=﹣<0,与y轴的交点在y轴负半轴.4.(2021山东烟台)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】B【解析】把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,可得二次函数的解析式为:y=ax2﹣2ax﹣3a,由图象可知,函数图象开口向下,所以a<0,可得b和c的符号,及a和c的数量关系;由函数解析式可得函数对称轴为直线:x=﹣=1,根据函数的增减性和最值,可判断②和④的正确性.解:把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,可得二次函数的解析式为:y=ax2﹣2ax﹣3a,∵该函数开口方向向下,∴a<0,∴b=﹣2a>0,c=﹣3a>0,∴ac<0,3a+c=0,①错误,③正确;∵对称轴为直线:x=﹣=1,∴x<1时,y随x的增大而增大,x>1时,y随x的增大而减小;②错误;∴当x=1时,函数取得最大值,即对于任意的m,有a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确.综上,正确的个数有2个.5.(2021四川凉山)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是()A.abc>0 B.函数的最大值为a﹣b+c C.当﹣3≤x≤1时,y≥0 D.4a﹣2b+c<0【答案】D【解析】利用抛物线开口方向得到a<0,根据抛物线的对称性得到b=2a<0,根据抛物线与y轴的交点位置得到c>0,则可对A进行判断;利用二次函数的最值问题可对B进行判断;利用抛物线与x轴的交点与图像可对C进行判断;利用x=﹣2,y>0可对D进行判断.∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣4,∴b=2a<0,∵抛物线与y轴的交点坐标在x轴上方,∴c>8,∴abc>0,所以A不符合题意;当x=﹣1时,函数的最大值为:a•(﹣5)2+b•(﹣1)+c=a﹣b+c,故B不符合题意;由图可知,抛物线与x轴的另一交点为(﹣2,所以﹣3≤x≤1时,故C不符合题意;当x=﹣5时,y>0,所以,a•(﹣2)6+b•(﹣2)+c>0,即2a﹣2b+c>0,故D符合题意.二、填空题1.(2021湖南益阳)已知y是x的二次函数,如表给出了y与x的几对对应值:x…﹣2﹣101234…y…11a323611…由此判断,表中a=.【答案】6【解析】确定二次函数的对称轴,利用二次函数的对称性即可求解.由上表可知函数图象经过点(0,3)和点(2,3),∴对称轴为x==1,∴x=﹣1时的函数值等于x=3时的函数值,∵当x=3时,y=6,∴当x=﹣1时,a=6.故答案为:6.2.如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.【答案】y=x2.【解析】过A作AD⊥y轴于D,过B作BE⊥y轴于E,又CB=3AC,得CE=3CD,BE=3AD,设AD=m,则BE=3m,A(﹣m,m2),B(3m,9m2),可得C(0,3m2),而P为CB的中点,故P(m,6m2),即可得y=x2.解:过A作AD⊥y轴于D,过B作BE⊥y轴于E,如图:∵AD⊥y轴,BE⊥y轴,∴AD∥BE, ∴==,∵CB=3AC,∴CE=3CD,BE=3AD,设AD=m,则BE=3m,∵A、B两点在二次函数y=x2的图象上,∴A(﹣m,m2),B(3m,9m2),∴OD=m2,OE=9m2,∴ED=8m2,而CE=3CD,∴CD=2m2,OC=3m2,∴C(0,3m2),∵P为CB的中点,∴P(m,6m2),又已知P(x,y),∴,∴y=x2;故答案为:y=x2.3.(2020•青岛)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.【答案】2.【解析】根据抛物线的解析式和二次函数的性质可以求得抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数,本题得以解决.∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,4.(2020•南京)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.【答案】①②④.【解析】①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确.5.(2020•泰安)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)【答案】①③④.【解析】任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的图象与系数之间的关系进行判断即可.将(﹣4,0)(0,﹣4)(2,6)代入y=ax2+bx+c得,,解得,,∴抛物线的关系式为y=x2+3x﹣4,a=1>0,因此①正确;对称轴为x,即当x时,函数的值最小,因此②不正确;把(﹣8,y1)(8,y2)代入关系式得,y1=64﹣24﹣4=36,y2=64+24﹣4=84,因此③正确;方程ax2+bx+c=﹣5,也就是x2+3x﹣4=﹣5,即方x2+3x+1=0,由b2﹣4ac=9﹣4=5>0可得x2+3x+1=0有两个不相等的实数根,因此④正确;正确的结论有:①③④三、解答题1.(2021福建)已知抛物线与x轴只有一个公共点.(1)若抛物线过点,求的最小值;(2)已知点中恰有两点在抛物线上.①求抛物线的解析式;②设直线l:与抛物线交于M,N两点,点A在直线上,且,过点A且与x轴垂直的直线分别交抛物线和于点B,C.求证:与的面积相等.【答案】(1)-1;(2)①;②见解析【解析】(1)先求得c=1,根据抛物线与x轴只有一个公共点,转化为判别式△=0,从而构造二次函数求解即可;(2)①根据抛物线与x轴只有一个公共点,得抛物线上的点只能落在x轴的同侧,据此判断即可;②证明AB=BC即可【详解】因为抛物线与x轴只有一个公共点,以方程有两个相等的实数根,所以,即.(1)因为抛物线过点,所以,所以,即.所以,当时,取到最小值.(2)①因抛物线与x轴只有一个公共点,所以抛物线上的点只能落在x轴的同侧.又点中恰有两点在抛物线的图象上,所以只能是在抛物线的图象上,由对称性可得抛物线的对称轴为,所以,即,因为,所以.又点在抛物线的图象上,所以,故抛物线的解析式为.②由题意设,则.记直线为m,分别过M,N作,垂足分别为E,F,即,因为,所以.又,所以,所以.所以,所以,即.所以,即.①把代入,得,解得,所以.②将②代入①,得,即,解得,即.所以过点A且与x轴垂直的直线为,将代入,得,即,将代入,得,即,所以,因此,所以与的面积相等.【点睛】本小题考查一次函数和二次函数的图象与性质、相似三角形的判定与性质、三角形面积等基础知识,突出运算能力、推理能力、空间观念与几何直观、创新意识,灵活运用函数与方程思想、数形结合思想及化归与转化思想求解是解题的关键.2.(2021贵州毕节)如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).(1)填空:点A的坐标为,点D的坐标为,抛物线的解析式为;(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;(3)P是抛物线对称轴上一动点,是否存在点P,使△PAC是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1)(1,0),(2,﹣1),y=x2﹣4x+3;(2)(2,2)或(2,1).【解析】(1)由对称轴为直线x=2求出b的值,再将点B(3,0)代入y=x2+bx+c即可求出函数的解析式;(2)分三种情况求函数在给定范围的最小值:当m+2<2时,(m+2)2﹣4(m+2)+3=;当m>2时,m2﹣4m+3=;当0≤m≤2时,与题意不符;(3)求出AC=,AC的中点为E(,),设P(2,t),因为△PAC是以AC为斜边的直角三角形,则PE=AC,列出方程即可求出t的值.解:(1)∵对称轴为直线x=2,∴b=﹣4,∴y=x2﹣4x+c,∵点B(3,0)是抛物线与x轴的交点,∴9﹣12+c=0,∴c=3,∴y=x2﹣4x+3,令y=0,x2﹣4x+3=0,∴x=3或x=1,∴A(1,0),∵D是抛物线的顶点,∴D(2,﹣1),故答案为(1,0),(2,﹣1),y=x2﹣4x+3;(2)当m+2<2时,即m<0,此时当x=m+2时,y有最小值,则(m+2)2﹣4(m+2)+3=,解得m=,∴m=﹣;当m>2时,此时当x=m时,y有最小值,则m2﹣4m+3=,解得m=或m=,∴m=;当0≤m≤2时,此时当x=2时,y有最小值为﹣1,与题意不符;综上所述:m的值为或﹣;(3)A(1,0),C(0,3),∴AC=,AC的中点为E(,),设P(2,t),∵△PAC是以AC为斜边的直角三角形,∴PE=AC,∴=,∴t=2或t=1,∴P(2,2)或P(2,1),∴使△PAC是以AC为斜边的直角三角形时,P点坐标为(2,2)或(2,1).3.(2021湖北恩施州)如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c经过点B,D(﹣4,5)两点,且与直线DC交于另一点E.(1)求抛物线的解析式;(2)F为抛物线对称轴上一点,Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由;(3)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.【答案】见解析。【解析】(1)求出点B的坐标为(1,0),再用待定系数法即可求解;(2)以点Q,F,E,B为顶点的四边形是以BE为边的菱形,故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),即可求解;(3)设抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,进而求解.解:(1)由点D的纵坐标知,正方形ABCD的边长为5,则OB=AB﹣AO=5﹣4=1,故点B的坐标为(1,0),则,解得,故抛物线的表达式为y=x2+2x﹣3;(2)存在,理由:∵点D、E关于抛物线对称轴对称,故点E的坐标为(2,5),由抛物线的表达式知,其对称轴为直线x=﹣1,故设点F的坐标为(﹣1,m),由点B、E的坐标得,BE2=(2﹣1)2+(5﹣0)2=26,设点Q的坐标为(s,t),∵以点Q,F,E,B为顶点的四边形是以BE为边的菱形,故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),则或,解得或,故点F的坐标为(﹣1,5+)或(﹣1,5﹣)或(﹣1,)或(﹣1,﹣);(3)存在,理由:设抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,理由:∵B′B″=PM=1,且B′B″∥PM,故四边形B″B′PM为平行四边形,则B″M=B′P=BP,则EM+MP+PB=EM+1+MB″=B″E为最小,由点B″、E的坐标得,直线B″E的表达式为y=(x+2),当x=﹣1时,y=(x+2)=,故点M的坐标为(﹣1,),则EM+MP+PB的最小值B″E==+1.4.(2021内蒙古鄂尔多斯)如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【答案】(1)A(﹣4,0),B(2,0),C(0,﹣8);(2);(3)M1(0,﹣8+),M2(0,﹣8﹣),M3(0,﹣),M4(0,﹣12).【分析】(1)令y=0,得x2+2x﹣8=0,可得A(﹣4,0),B(2,0),令x=0,得y=﹣8,可得C(0,﹣8);(2)利用待定系数法求得直线AC的解析式为y=﹣2x﹣8,根据题意得E(m,m2+2m﹣8),D(m,﹣2m﹣8),即可得出DE=﹣m2﹣4m,利用△ACO∽△DOF,建立方程求解即可;(3)分三种情况:CM对角线或CN为对角线或CP为对角线,①当CP为对角线时,CM∥PN,CM=PN=CN,可得出N(﹣1,﹣6),根据CM=PN=CN=,即可求出答案;②当CN为对角线时,CM∥PN,CM=PN=CP,设CM=a,则M(0,﹣8+a),P(﹣1,﹣6﹣a),建立方程求解即可;③当CM对角线时,PN与CM互相垂直平分,设P(﹣1,b),则N(1,b),M(0,2b+8),根据N(1,b)在直线y=﹣2x﹣8上,即可求得答案.解:(1)在y=x2+2x﹣8中,令y=0,得x2+2x﹣8=0,解得:x1=﹣4,x2=2,∴A(﹣4,0),B(2,0),令x=0,得y=﹣8,∴C(0,﹣8);(2)设直线AC的解析式为y=kx+b,∵A(﹣4,0),C(0,﹣8),∴,解得:,∴直线AC的解析式为y=﹣2x﹣8,∵直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,∴E(m,m2+2m﹣8),D(m,﹣2m﹣8),∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m,设DE交x轴于点F,则F(m,0),∴OF=﹣m,∴AF=m﹣(﹣4)=m+4,DF=2m+8,∵OD⊥AC,EF⊥OA,∴∠ODA=∠OFD=∠DFA=∠AOC=90°,∴∠DOF+∠COD=∠OCD+∠COD=90°,∴∠DOF=∠OCD,∴△ACO∽△DOF,∴=,∴OC•DF=OA•OF,∴8(2m+8)=4(﹣m),解得:m=﹣,∴DE=﹣m2﹣4m=﹣(﹣)2﹣4×(﹣)=;(3)存在,如图2,∵y=x2+2x﹣8=(x+1)2﹣9,抛物线对称轴为直线x=﹣1,∵以C、M、N、P为顶点的四边形是菱形,∴分三种情况:CM对角线或CN为对角线或CP为对角线,①当CP为对角线时,CM∥PN,CM=PN=CN,∴N点为直线AC与抛物线对称轴的交点,即N(﹣1,﹣6),CN==,∴CM=PN=,∴M1(0,﹣8+),M2(0,﹣8﹣);②当CN为对角线时,CM∥PN,CM=PN=CP,设CM=a,则M(0,﹣8+a),P(﹣1,﹣6﹣a),∴(﹣1﹣0)2+(﹣6﹣a+8)2=a2,解得:a=,∴M3(0,﹣),③当CM对角线时,PN与CM互相垂直平分,设P(﹣1,b),则N(1,b),M(0,2b+8),∵N(1,b)在直线y=﹣2x﹣8上,∴b=﹣2×1﹣8=﹣10,∴M4(0,﹣12),综上所述,点M的坐标为:M1(0,﹣8+),M2(0,﹣8﹣),M3(0,﹣),M4(0,﹣12).5.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m时,求点P的坐标;②求m的最大值.【答案】见解析。【分析】(1)函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),将点A、B、C的坐标代入抛物线表达式,即可求解;(2)证明△BCD≌△BCM(AAS),则CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),即可求解;(3)过点P作PN∥x轴交BC于点N,则△PFN∽△AFB,则,而S△BFP=mS△BAF,则,解得:mPN,即可求解.【解析】(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),将点A、B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2﹣2x﹣3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论