2022-2023学年江苏省镇江市普通高校对口单招数学自考真题(含答案)_第1页
2022-2023学年江苏省镇江市普通高校对口单招数学自考真题(含答案)_第2页
2022-2023学年江苏省镇江市普通高校对口单招数学自考真题(含答案)_第3页
2022-2023学年江苏省镇江市普通高校对口单招数学自考真题(含答案)_第4页
2022-2023学年江苏省镇江市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年江苏省镇江市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.设集合A={x|x≤2或x≥6},B={x||x-1|≤3},则为A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]

2.在等差数列{an}中,若a3+a17=10,则S19等于()A.65B.75C.85D.95

3.已知a<0,0<b<1,则下列结论正确的是()A.a>ab

B.a>ab2

C.ab<ab2

D.ab>ab2

4.A.B.C.D.

5.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/50

6.下列函数中是奇函数,且在(-∞,0)减函数的是()A.y=

B.y=1/x

C.y==x2

D.y=x3

7.下列函数中是偶函数的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx

8.A.B.C.D.

9.下列各组数中成等比数列的是()A.

B.

C.4,8,12

D.

10.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

二、填空题(10题)11.已知_____.

12.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.

13.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.

14.直线经过点(-1,3),其倾斜角为135°,则直线l的方程为_____.

15.如图是一个程序框图,若输入x的值为8,则输出的k的值为_________.

16.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.

17.若事件A与事件互为对立事件,则_____.

18.已知i为虚数单位,则|3+2i|=______.

19.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.

20.

三、计算题(5题)21.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

22.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

23.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

24.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

25.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

四、简答题(10题)26.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

27.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

28.已知求tan(a-2b)的值

29.已知a是第二象限内的角,简化

30.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

31.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

32.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

33.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

34.证明上是增函数

35.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

五、解答题(10题)36.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

37.求函数f(x)=x3-3x2-9x+5的单调区间,极值.

38.2017年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=x2/10-2x+90.(1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2017年获得利润的最大值.

39.

40.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD。

41.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.

42.某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本:y(万元)与年产量x(吨)之间的关系可近似地表示为y=x2/10-30x+400030x+4000.(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.

43.

44.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.</c

45.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.

六、单选题(0题)46.己知tanα,tanβ是方程2x2+x-6=0的两个根,则tan(α+β)的值为()A.-1/2B.-3C.-1D.-1/8

参考答案

1.A由题可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。

2.D

3.C命题的真假判断与应用.由题意得ab-ab2=ab(1-b)<0,所以ab<ab2

4.B

5.B简单随机抽样方法.总体含有100个个体,则每个个体被抽到的概率为1/100,所以以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1/100×5=1/20.

6.B函数奇偶性,增减性的判断.A是非奇非偶函数;C是偶函数;D是增函数.

7.D

8.D

9.B由等比数列的定义可知,B数列元素之间比例恒定,所以是等比数列。

10.D

11.

12.

,以直线b和A作平面,作P在该平面上的垂点D,作DC垂直b于C,则有PD=,BD=4,DC=2,因此PC=,(PC为垂直于b的直线).

13.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.

14.x+y-2=0

15.4程序框图的运算.执行循环如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2时;x=2×35+1=71,k=3时;x=2×71+1=143>115,k=4,此时满足条件.故输出k的值为4.

16.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.

17.1有对立事件的性质可知,

18.

复数模的计算.|3+2i|=

19.15程序框图的运算.模拟程序的运行,可得k=11,n=1,S=1不满足条件S>11,执行循环体,n=2,S=3,不满足条件S>11,执行循环体,n=3,S=6,不满足条件S>11,执行循环体,n=4,S=10,不满足条件S>11,执行循环体,N=5,S=15,此时,满足条件S>11,退出循环,输出S的值为15.故答案为15.

20.{x|0<x<3}

21.

22.

23.

24.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

25.

26.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

27.

28.

29.

30.(1)(2)∴又∴函数是偶函数

31.x-7y+19=0或7x+y-17=0

32.

33.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

34.证明:任取且x1<x2∴即∴在是增函数

35.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

36.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,李经理想获得利润22500,元,需将这批香菇存放50天后出售.(3)设利润为w,则由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,当x=100时,wmax=30000;又因为100∈(0,110),所以李经理将这批香菇存放100天后出售可获得最大利润为30000元.

37.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0时,-1<x<3.∴f(x)单调增区间为(-∞,-1],[3,+∞),单调减区间为[-1,3].f(x)极大值为f(-1)=l0,f(x)极小值为f(3)=-22.

38.(1)设每吨的成本为w万元,则w=y/x=x/10+90/(x-2)>2-2=4,当且仅当总产量x=30吨时,每吨的成本最低为4万元.(2)设利润为u万元,则w=6x-(x2/10-2x+90)=-x2/10+8x-90=-1/10(x-40)2+70,当总产量x=40吨时,利润最大为70万元.

39.

40.

41.(1)由题可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=46.

42.(1)设每吨的平均成本为W(万元/吨),ω=y/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论