版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年河北省保定市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.A.B.C.
2.A.B.C.D.
3.设i是虚数单位,则复数(1-i)(1+2i)=()A.3+3iB.-1+3iC.3+iD.-1+i
4.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
5.已知a=(1,2),b=(x,4)且A×b=10,则|a-b|=()A.-10
B.10
C.
D.
6.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.
B.或
C.
D.或
7.在△ABC中,A=60°,|AB|=2,则边BC的长为()A.
B.7
C.
D.3
8.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60
9.函数的定义域是()A.(-1,1)B.[0,1]C.[-1,1)D.(-1,1]
10.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)
二、填空题(10题)11.化简
12.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.
13.设A=(-2,3),b=(-4,2),则|a-b|=
。
14.
15.函数f(x)=-X3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________________.
16.等差数列{an}中,已知a4=-4,a8=4,则a12=______.
17.在△ABC中,AB=,A=75°,B=45°,则AC=__________.
18.
19.在锐角三角形ABC中,BC=1,B=2A,则=_____.
20.若lgx>3,则x的取值范围为____.
三、计算题(5题)21.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
22.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
23.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
24.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、简答题(10题)26.求经过点P(2,-3)且横纵截距相等的直线方程
27.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
28.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
29.化简
30.已知是等差数列的前n项和,若,.求公差d.
31.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
32.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
33.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
34.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
35.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
五、解答题(10题)36.已知等差数列{an}的公差为2,其前n项和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn,求证:数列{Tn+1/6}为等比数列.
37.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,在C上;(1)求C的方程;(2)直线L不过原点O且不平行于坐标轴,L与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线L的斜率的乘积为定值.
38.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
39.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
40.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.
41.已知函数f(x)=x2-2ax+a,(1)当a=2时,求函数f(x)在[0,3]上的值域;(2)若a<0,求使函数f(x)=x2-2ax+a的定义域为[―1,1],值域为[一2,2]的a的值.
42.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
43.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.</c
44.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.
45.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.
六、单选题(0题)46.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8
参考答案
1.A
2.B
3.C复数的运算.(1-i)(1+2i)=1+2i-i-2i2=1+i+2=3+i,
4.C充分条件,必要条件,充要条件的判断.由x>1知,x3>1;由x3>1可推出x>1.
5.D向量的线性运算.因为a×b=10,x+8==10,x=2,a-b=(-l,-2),故|a-b|=
6.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。
7.C解三角形余弦定理,面积
8.C
9.C由题可知,x+1>=0,1-x>0,因此定义域为C。
10.C直线与圆的公共点.圆(x-a)2+y2=2的圆心C(a,0)到x-y+1=0
11.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
12.45°,由题可知,因此B=45°。
13.
。a-b=(2,1),所以|a-b|=
14.外心
15.(0,3).利用导数求函数的极值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因为x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).
16.12.等差数列的性质.根据等差数列的性质有2a8=a4+a12,a12=2a8-a4=12.
17.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
18.2
19.2
20.x>1000对数有意义的条件
21.
22.
23.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
24.
25.
26.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
27.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
28.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
29.
30.根据等差数列前n项和公式得解得:d=4
31.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
32.∵(1)这条弦与抛物线两交点
∴
33.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
34.
35.(1)∵
∴又∵等差数列∴∴(2)
36.
37.
38.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80
39.(1)如图,连接BD,在正方体AC1中,对角线BD//B1D1.又因为,E,F分别为棱AD,AB的中点,所以EF//BD,所以EF//B1D1,又因为B1D1包含于平面CB1D1,所以EF//平面CB1D1.
40.
41.
42.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025 小学六年级语文下册 标点知识 破折号声音延长课件
- 跨境电商独立站域名备案技术协议2025年
- 口罩生产供应协议2025年出口版
- 2025年百货商场电子价签系统服务
- 居家养老陪护服务合同2025年
- 考导游证面试题及答案
- 深度解析(2026)《GBT 39358-2020中国森林认证 非木质林产品经营》
- 深度解析(2026)《GBT 39273-2020滚动轴承和关节轴承 电子媒体查询结构 用特性词汇标识的特征和性能指标》(2026年)深度解析
- 生态环保省考面试题目及答案
- 深度解析(2026)《GBT 34638-2017无损检测 超声泄漏检测方法》
- 2026年内蒙古商贸职业学院单招综合素质考试题库附答案详解
- 2026年青岛航空科技职业学院单招职业适应性考试题库含答案详解
- 事业编财会面试题及答案
- 《医保支付资格管理》培训考核题库及答案
- (2025年)福建能化集团招聘笔试题附答案
- 计调年终总结汇报
- 江苏省专升本2025年食品科学与工程食品工艺学试卷(含答案)
- 具身智能+物流智能仓储解决方案分析报告
- 人行道维修施工方案
- TOP TOY潮玩集合品牌盲盒营销现状及对策研究
- 第16课 祖国我为您自豪(教学课件)小学二年级上册 统编版《道德与法治》新教材
评论
0/150
提交评论