




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.函数y=x+3中,自变量xA.x>-3 B.x≥-3 C.x2.已知是一次函数的图像上三点,则的大小关系为()A. B. C. D.3.如图,中,是斜边上的高,,那么等于()A. B. C. D.4.如图,广场中心的菱形花坛ABCD的周长是40米,∠A=60°,则A,C两点之间的距离为()A.5米 B.5米 C.10米 D.10米5.菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为()A.48 B. C. D.186.在ABCD中,∠A+∠C=160°,则∠C的度数为()A.100° B.80° C.60° D.20°7.正方形具有而菱形不具有的性质是()A.对角线平分一组对角 B.对角互补C.四边相等 D.对边平行8.如图,、分别是平行四边形的边、上的点,且,分别交、于点、.下列结论:①四边形是平行四边形;②;③;④,其中正确的个数是()A.1个 B.2个C.3个 D.4个9.在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是()A.测量对角线是否平分 B.测量两组对边是否分别相等C.测量其中三个角是否是直角 D.测量对角线是否相等10.如图,在中,,、是斜边上两点,且,将绕顺时针旋转后,得到,连接,则下列结论不正确的是()A. B.为等腰直角三角形C.平分 D.11.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分80859095人数2864那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,9012.已知关于x的方程x2-kx+6=0有两个实数根,则k的值不可能是()A.5 B.-8 C.2 D.4二、填空题(每题4分,共24分)13.已知菱形一内角为,且平分这个内角的一条对角线长为8,则该菱形的边长__________.14.若直线y=kx+b中,k<0,b>0,则直线不经过第_____象限.15.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)16.线段AB的两端点的坐标为A(﹣1,0),B(0,﹣2).现请你在坐标轴上找一点P,使得以P、A、B为顶点的三角形是直角三角形,则满足条件的P点的坐标是______.17.方程的解是.18.若n边形的每个内角都等于150°,则n=_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点.(1)直接写出点C的坐标,C______(2)求直线CD的解析式;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.20.(8分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM.A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)写出点M的坐标;(2)求直线MN的表达式;(3)若点A的横坐标为-1,求矩形ABOC的面积.21.(8分)如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.求证:∠DAF=∠BCE.22.(10分)如图,在四边形ABCD中,AB=4,BC=3,CD=12,AD=13,∠B=90°,连接AC.求四边形ABCD的面积.23.(10分)判断代数式的值能否等于-1?并说明理由.24.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.ΔABC的三个顶点A,B,C都在格点上,将ΔABC绕点A按顺时针方向旋转90∘得到ΔA(1)在正方形网格中,画出ΔAB(2)画出ΔAB'C'向左平移(3)计算线段AB在变换到AB'25.(12分)如图,正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,,H在BC延长线上,且CH=AF,连接DF,DE,DH。(1)求证DF=DH;(2)求的度数并写出计算过程.26.疫情发生后,口罩成了人们生活的必需品.某药店销售A,B两种口罩,今年3月份的进价如下表:(1)已知B种口罩每包售价比A种口罩贵20元,用64元购买到A种口罩的数量和144元购买到B种口罩的数量相同,求A种口罩和B种口罩每包售价.(2)为满足不同顾客的需求,该药店准备4月份新增购进进价为每包10元的C种口罩,A种和B种口罩仍按需购进,进价与3月份相同,A种口罩的数量是B种口罩的5倍,共花费12000元,则该店至少可以购进三种口罩共多少包?
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据被开方数大于等于0列式进行计算即可得解.【详解】根据题意得,x+3⩾0,解得x⩾−3.故选B.2、A【解析】
根据k的值先确定函数的变化情况,再由x的大小关系判断y的大小关系.【详解】解:y随x的增大而减小又,即故答案为:A【点睛】本题考查了一次函数的性质,时,y随x的增大而增大,时,y随x的增大而减小,灵活运用这一性质是解题的关键.3、C【解析】
根据同角的余角相等证明∠DCB=∠CAD,利用两角对应相等证明△ADC∽△CDB,列比例式可得结论.【详解】解:∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵CD是高,
∴∠ADC=∠CDB=90°,
∴∠ACD+∠CAD=90°,
∴∠DCB=∠CAD,
∴△ADC∽△CDB,∴CD2=AD•BD,
∵AD=9,BD=4,∴CD=6故选:C.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.4、D【解析】
设AC与BD交于点O.∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=40÷4=10米∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=10米,OD=OB=5米在Rt△AOB中,根据勾股定理得:OA=5米∴AC=2OA=10米.故选D.5、B【解析】试题解析:根据菱形的面积公式:故选B.6、B【解析】
根据平行四边形的对角相等,结合∠A+∠C=160°求解即可.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=160°,∴∠A=∠C=80°.故选B.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.7、B【解析】
要熟练掌握菱形对角线相互垂直平分与正方形对角线相互垂直平分相等的性质,根据各自性质进行比较即可解答.【详解】A.正方形和菱形的对角线都可以平分一组对角,故本选项错误B.只有正方形的对角互补,故本项正确C.正方形和菱形的四边都相等,故本项错误D.正方形和菱形的对边都平行,故本项错误故选B【点睛】本题考查正方形和菱形的性质,熟练掌握其性质是解题关键.8、D【解析】
根据平行四边形的性质即可判断.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,又,∴四边形是平行四边形①正确;∴AE=CF,∠EAG=∠FCH,又∠AGE=∠BGC=∠CHF,∴,②正确;∴EG=FH,故BE-EG=DF-FH,故,③正确;∵,∴,故④正确故选D.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质与全等三角形的判定与性质.9、C【解析】分析:根据矩形的判定方法逐项分析即可.详解:A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;D、根据对角线相等不能得出四边形是矩形,故本选项错误;故选C.点睛:本题考查了矩形的判定方法的实际应用,熟练掌握矩形的判定方法是解答本题的关键.矩形的判定方法有:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.10、B【解析】
由已知和旋转的性质可判断A项,进一步可判断C项;利用SAS可证明△AED≌△AEF,可得ED=EF,容易证明△FBE是直角三角形,由此可判断D项和B项,于是可得答案.【详解】解:∵△ADC绕点A顺时针旋转90°得△AFB,∴△ADC≌△AFB,∠FAD=90°,AD=AF,∵∠DAE=45°,∴∠FAE=90°-∠DAE=45°,所以A正确;∴∠DAE=∠FAE,∴平分,所以C正确;∵∴△AED≌△AEF(SAS),∴ED=EF,在Rt△ABC中,∠ABC+∠C=90°,又∵∠C=∠ABF,∴∠ABC+∠ABF=90°,即∠FBE=90°,∴在Rt△FBE中,由勾股定理得:,∴,所以D正确;而BE、CD不一定相等,所以BE、BF不一定相等,所以B不正确.故选B.【点睛】本题考查了等腰直角三角形的性质、旋转的性质、勾股定理以及全等三角形的判定和性质,解题时注意旋转前后的对应关系.11、B【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】∵85分的有8人,人数最多,∴众数为85分;∵处于中间位置的数为第10、11两个数为85分,90分,∴中位数为87.5分.故选B.【点睛】本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12、D【解析】
根据判别式的意义得到k2≥24,然后对各选项进行判断.【详解】解:根据题意得△=(-k)2-4×6≥0,即k2≥24,故选:D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题(每题4分,共24分)13、8【解析】
根据已知可得该对角线与菱形的一组邻边构成一个等边三角形,从而可求得菱形的边长.【详解】菱形的一个内角为120°,则邻角为60°则这条对角线和一组邻边组成等边三角形,可得边长为8cm.故答案为8.【点睛】此题考查菱形的性质,对角线与菱形的一组邻边构成一个等边三角形是解题关键14、【解析】∵k<0,b>0,∴直线y=kx+b经过第一、二、四象限,故答案为一、二、四.15、AC=BC【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.16、(0,0)、(0,)、(4,0)【解析】
由平面直角坐标系的特点可知当P和O重合时三角形PAB是直角三角形,由射影定理逆定理可知当AO2=BO•P′O时,三角形PAB是直角三角形或BO2=AO•OP″时三角形PAB也是直角三角形.【详解】如图:①由平面直角坐标系的特点:AO⊥BO,所以当P和O重合时三角形PAB是直角三角形,所以P的坐标为:(0,0);②由射影定理逆定理可知当AO2=BO•P′O时三角形PAB是直角三角形,即:12=2•OP′,解得OP′=;故P点的坐标是(0,);同理当BO2=AO•OP″时三角形PAB也是直角三角形,即22=1OP″解得OP″=4,故P点的坐标是(4,0).故答案为(0,0)、(0,)、(4,0)【点睛】主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.17、【解析】解:,.18、1【解析】
根据多边形的内角和定理:求解即可.【详解】解:由题意可得:,解得.故多边形是1边形.故答案为:1.【点睛】主要考查了多边形的内角和定理.边形的内角和为:.此类题型直接根据内角和公式计算可得.三、解答题(共78分)19、(1)C4,4;(2)y=43x-43;(3)点F的坐标是【解析】
(1)根据A(8,0)B(0,8),点C为线段AB的中点即可得到C点坐标;(2)由OD=1,故D(1,0),再由C点坐标用待定系数法即可求解;(3)根据A、C、D的坐标及平行四边形的性质作图分三种情况进行求解【详解】解:(1)∵A(8,0)B(0,8),点C为线段AB的中点∴C(2)由已知得点D的坐标为1,0,设直线CD的解析式是y=ax+b,则a+b=04a+b=4,解得a=∴直线CD的解析式是y=4(3)存在点F,使以A、C、D、F为顶点的四边形为平行四边形,①如图1,∵CF平行且等于DA,相当于将点C向右平移7个单位,故点F的坐标是11,4.②如图2,∵AF∥CD,∴AF所在的直线解析式为y=4把A(8,0)代入解得AF所在的直线的解析式是y=4根据A(8,0),B(0,8)求出AB直线的解析式为y=-x+8,∵DF∥AB,∴DF所在的直线解析式为y=-x+b把D(1,0)代入y=-x+b2求得DF所在的直线的解析式是联立y=43x-323y=-x+1,解得:③如图3,当CF平行且等于AD时,相当于将点C向左平移7个单位,故点F的坐标是-3,4.综上,可得点F的坐标是11,4,5,-4,-3,4.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法求解析式及平行四边形的性质.20、(1)(-2,0);(2)该y=3x+6;(3)S矩形ABOC=3.【解析】
(1)由点N(0,6),得出ON=6,再由ON=3OM,求得OM=2,得出点M的坐标;
(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;
(3)将A点横坐标代入y=3x+6,求出纵坐标,即可表示出S矩形ABOC.【详解】(1)∵N(0,6)∴ON=6∵ON=3OM∴OM=2∴M点坐标为(-2,0);(2)该直线MN的表达式为y=kx+b,分别把M(-2,0),N(0,6)代入,得解得∴直线MN的表达式为y=3x+6.(3)在y=3x+6中,当x=-1时,y=3,∴OB=1,AB=3,∴S矩形ABOC=1×3=3.【点睛】本题考查的知识点是待定系数法求函数解析式和利用一次函数解决实际问题和矩形的面积的运用,解题关键是利用图像进行解题.21、详见解析【解析】
只要证明△ADF≌△CBE即可解决问题.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵DF=BE,∴△ADF≌△CBE,∴∠DAF=∠BCE.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22、36【解析】
由AB=4,BC=3,∠B=90°可得AC=1.可求得S△ABC;再由AC=1,AD=13,CD=12,可得△ACD为直角三角形,进而求得S△ACD,可求S四边形ABCD=S△ABC+S△ACD.【详解】∵∠ABC=90°,AB=4,BC=3,∴AC=∵CD=12,AD=13,∴∴∴∠ACD=90°∴,∴【点睛】此题考查勾股定理及逆定理的应用,判断△ACD是直角三角形是关键.23、不能,理由见解析【解析】
先将原代数式化简,再令化简后的结果等于-1,解出a的值,由结合分式存在的意义可以得出结论.【详解】原式=.当=−1时,解得:a=0,∵(a+1)(a−1)a≠0,即a≠±1,a≠0,∴代数式的值不能等于−1.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则24、(1)见解析;(2)见解析;(3)25π4【解析】
(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用扇形面积求法得出答案.【详解】(1)如图所示:△AB'C'即为所求;(2)如图所示:△A'B″C″即为所求;(3)由勾股定理得AB=5,线段AB在变换到AB'的过程中扫过区域的面积为:90π×52【点睛】本题考查了旋转变换以及平移变换,正确得出对应点位置是解题的关键.25、(1)详见解析;(2),理由详见解析.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西西林县委员会社会工作部招聘专职化社区工作者(专职网格管理员)编外聘用人员8人考前自测高频考点模拟试题及1套参考答案详解
- 班组安全培训记录评价课件
- 2025吉林二道江区政府专职消防员招聘1人模拟试卷及一套答案详解
- 2025包头市东河区机关所属事业单位春季引进人才51人模拟试卷及参考答案详解
- 2025甘肃陇南市成县招聘城镇公益性岗位人员16人考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025年福建省级机关医院招聘10人考前自测高频考点模拟试题及一套完整答案详解
- 2025广西临桂农村商业银行劳务派遣人员招聘4人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025贵州毕节市大方县人民政府办公室招募见习人员5人考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年山西云时代技术有限公司校园招聘模拟试卷及完整答案详解1套
- 2025贵州经贸职业技术学院第十三届贵州人才博览会引才考前自测高频考点模拟试题附答案详解(典型题)
- 人生的因拼搏而精彩课件
- 2025年国企综合笔试试题及答案
- 中药用药安全知识培训课件
- 老旧护栏加固施工方案
- 中国资源循环集团有限公司子公司招聘笔试题库2025
- 雨季行车安全培训
- 2025年青海海东通信工程师考试(通信专业实务终端与业务)高、中级考前题库及答案
- 2025贵州贵安城市置业开发投资有限公司招聘32人考试参考题库及答案解析
- 2025年浙江省档案职称考试(档案高级管理实务与案例分析)综合能力测试题及答案
- 景区接待培训课件
- 部编人教版二年级上册语文全册教学设计(配2025年秋改版教材)
评论
0/150
提交评论