版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33° B.80° C.57° D.67°2.下列选项中,矩形具有的性质是()A.四边相等 B.对角线互相垂直 C.对角线相等 D.每条对角线平分一组对角3.化简的结果是()A.5 B.-5 C.±5 D.254.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列说法:四边形ACED是平行四边形,△BCE是等腰三角形,四边形ACEB的周长是10+2,④四边形ACEB的面积是16.正确的个数是()A.2个 B.3个 C.4个 D.5个5.如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒3cm的速度沿折线A-B-C-D方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动、已知动点P,Q同时出发,当点Q运动到点C时,点P,Q停止运动,设运动时间为t秒,在这个运动过程中,若△BPQ的面积为20cm2,则满足条件的t的值有(
)A.1个 B.2个 C.3个 D.4个6.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b的解集正确的是()A.x>﹣1 B.x>1 C.x<1 D.x<﹣17.为了了解某校初三年级学生的运算能力,随机抽取了名学生进行测试,将所得成绩(单位:分)整理后,列出下表:分组频率本次测试这名学生成绩良好(大于或等于分为良好)的人数是()A. B. C. D.8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A. B.C. D.9.已知一个正多边形的每个外角等于,则这个正多边形是()A.正五边形 B.正六边形 C.正七边形 D.正八边形10.当a<0,b<0时,-a+2-b可变形为()A. B.- C. D.11.已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定12.下列图形,可以看作中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.在平行四边形ABCD中,∠B+∠D=190°,则∠A=_____°.14.某种分子的半径大约是0.0000108mm,用科学记数法表示为______________.15.如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.当时,正方形ABCD的边长______.连结OD,当时,______.16.如图所示的分式化简,对于所列的每一步运算,依据错误的是_______.(填序号)①:同分母分式的加法法则②:合并同类项法则③:乘法分配律④:等式的基本性质17.如图,在直角坐标系中,有菱形OABC,A点的坐标是(5,0),双曲线经过点C,且OB•AC=40,则k的值为_________.18.一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为______.三、解答题(共78分)19.(8分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.20.(8分)解下列方程:(1);(2).21.(8分)如图,中任意一点经平移后对应点为,将作同样的平移得到,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)画出,并写出点D、E、F的坐标..(2)若与关于原点O成中心对称,直接写出点D的对应点的坐标.22.(10分)如图,已知点在四边形的边上,设,,.(1)试用向量、和表示向量,;(2)在图中求作:.(不要求写出作法,只需写出结论即可)23.(10分)体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:投进个数10个8个6个4个人数1个5人1人1人(1)请计算甲组平均每人投进个数;(1)经统计,两组平均每人投进个数相同且乙组成的方差为3.1.若从成绩稳定性角度看,哪一组表现更好?24.(10分)当a在什么范围内取值时,关于x的一元一次方程的解满足?25.(12分)如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.26.师徒两人分别加工1200个零件,已知师傅每天加工零件的个数是徒弟每天加工零件个数的1.5倍,结果师傅比徒弟少用10天完成,求徒弟每天加工多少个零件?
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.【详解】解:在△ABC中,∠A=33°,
∴由平移中对应角相等,得∠EDF=∠A=33°.
故选:A.【点睛】此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.2、C【解析】
根据矩形的性质逐项分析即可.【详解】A.四边相等是菱形的性质,不是矩形的性质,故不符合题意;B.对角线互相垂直是菱形的性质,不是矩形的性质,故不符合题意;C.对角线相等是是矩形的性质,故符合题意;D.每条对角线平分一组对角是菱形的性质,不是矩形的性质,故不符合题意;故选C.【点睛】本题考查了矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分;3、A【解析】
根据开平方的运算法则计算即可.【详解】解:==5,
故选:A.【点睛】本题考查了开平方运算,关键是掌握基本的运算法则.4、B【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【详解】①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,所以①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,所以②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB=,∴四边形ACEB的周长是10+2;所以③正确;④四边形ACEB的面积:×2×4+×4×2=8,所以④错误,故选:C.【点睛】考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法和等腰三角形的判定方法.5、B【解析】
过A作AH⊥DC,由勾股定理求出DH的长.然后分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.【详解】解:过A作AH⊥DC,∴AH=BC=2cm,DH===1.i)当P在AB上时,即时,如图,,解得:;ii)当P在BC上时,即<t≤1时,BP=3t-10,CQ=11-2t,,化简得:3t2-34t+100=0,△=-44<0,∴方程无实数解.iii)当P在线段CD上时,若点P在线段CD上,若点P在Q的右侧,即1≤t≤,则有PQ=34-5t,,<1(舍去);若点P在Q的左侧时,即,则有PQ=5t-34,;t=7.2.综上所述:满足条件的t存在,其值分别为,t2=7.2.故选B.【点睛】本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.6、A【解析】
根据图象求解不等式,要使x+a>kx+b,则必须在y1=x+a在y2=kx+b上方,根据图形即可写出答案.【详解】解:因为直线y1=x+a与y2=kx+b相交于点P(﹣1,2)要使不等式x+a>kx+b,则必须在y1=x+a在y2=kx+b上方所以可得x>﹣1时,y1=x+a在y2=kx+b上方故选A.【点睛】本题主要考查利用函数图形求解不等式,关键在于根据图象求交点坐标.7、D【解析】
先根据表格得到成绩良好的频率,再用100×频率即可得解.【详解】解:由题意可知成绩良好的频率为0.3+0.4=0.7,则这名学生成绩良好的人数是100×0.7=70(人).故选D.【点睛】本题主要考查频率与频数,解此题的关键在于熟练掌握其知识点,在题中准确找到需要的信息.8、D【解析】
本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间,减去提前完成时间,可以列出方程:故选:D.【点睛】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.9、B【解析】分析:根据多边形的外角和为360°即可得出答案.详解:360°÷60°=6,即六边形,故选B.点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.10、C【解析】试题解析:∵a<1,b<1,
∴-a>1,-b>1.
∴-a+2-b=()2+2+()2,
=()2.
故选C.11、A【解析】
因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.【详解】解:∵k=﹣3<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2,故选A.【点睛】本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.12、B【解析】
根据中心对称图形的概念对各选项分析判断即可得解.【详解】、不是中心对称图形,故本选项不符合题意;、是中心对称图形,故本选项符合题意;、不是中心对称图形,故本选项不符合题意;、不是中心对称图形,故本选项不符合题意.故选:.【点睛】本题考查了中心对称图形的概念,解题关键在于中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、1【解析】
利用平行四边形的对角相等、邻角互补可求得答案.【详解】解:因为四边形ABCD是平行四边形,所以∠B=∠D,∠A+∠B=180°.因为∠B+∠D=190°,所以∠B=95°.所以∠A=180°﹣95°=1°.故答案为1.【点睛】此题考查平行四边形的性质,解题关键在于掌握其性质定理14、1.08×10-5【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000108=1.08×10-5.故答案为1.08×10-5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、;4或6【解析】
(4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;(4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.【详解】解:(4)当n=4时,OA=4,
在Rt△COA中,AC4=CO4+AO4=4.
∵ABCD为正方形,
∴AB=CB.
∴AC4=AB4+CB4=4AB4=4,
∴AB=.
故答案为.
(4)如图所示:过点D作DM⊥y轴,DN⊥x轴.
∵ABCD为正方形,
∴A、B、C、D四点共圆,∠DAC=45°.
又∵∠COA=90°,
∴点O也在这个圆上,
∴∠COD=∠CAD=45°.
又∵OD=,
∴DN=DM=4.
∴D(-4,4).
在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,
∴△DNA≌△DMC.
∴CM=AN=OC-MO=3.
∵D(-4,4),
∴A(4,0).
∴n=4.
如下图所示:过点D作DM⊥y轴,DN⊥x轴.
∵ABCD为正方形,
∴A、B、C、D四点共圆,∠DAC=45°.
又∵∠COA=90°,
∴点O也在这个圆上,
∴∠AOD=∠ACD=45°.
又∵OD=,
∴DN=DM=4.
∴D(4,-4).
同理:△DNA≌△DMC,则AN=CM=5.
∴OA=ON+AN=4+5=6.
∴A(6,0).
∴n=6.
综上所述,n的值为4或6.
故答案为4或6.【点睛】本题考核知识点:正方形性质、全等三角形性质,圆等.解题关键点:熟记相关知识点.16、④【解析】
根据分式的基本性质可知.【详解】解:根据的是分式的基本性质,而不是等式的性质,所以④错误,故答案为:④.【点睛】本题考查了分式的基本性质,解题的关键是熟知分式的基本性质是分子分母同时乘以或除以一个不为零的整式,分式的值不变.17、12【解析】
过点C作于D,根据A点坐标求出菱形的边长,再根据菱形的面积求得CD,然后利用勾股定理求得OD,从而得到C点坐标,代入函数解析式中求解.【详解】如图,过点C作于D,∵点A的坐标为(5,0),∴菱形的边长为OA=5,,,∴,解得,在中,根据勾股定理可得:,∴点C的坐标为(3,4),∵双曲线经过点C,∴,故答案为:12.【点睛】本题考查了菱形与反比例函数的综合运用,解题的关键在于合理作出辅助线,求得C点的坐标.18、2【解析】
先根据各小组的频率和是2,求得第四组的频率;再根据频率=频数÷数据总数,进行计算即可得出第四组数据的个数.【详解】解:∵一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.2、0.3,∴第四组的频率为:2-0.25-0.2-0.3=0.3,∴第四组数据的个数为:50×0.3=2.故答案为2.【点睛】本题考查频率与频数,用到的知识点:频率=频数:数据总数,各小组的频率和是2.三、解答题(共78分)19、(1)y=x+1;(2)C(0,1);(3)1【解析】试题分析:(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;
(2)根据(1)中的解析式,令x=0求得点C的坐标;
(3)根据(1)中的解析式,令y=0求得点D的坐标,从而求得三角形的面积.试题解析:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),
∴2m=2,
m=1.
把(1,2)和(-2,-1)代入y=kx+b,得解得:则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C(0,1);(3)令y=0,则x=-1.则△AOD的面积=.【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.20、(1)x=−4;(2)【解析】
(1)利用解分式方程的一般步骤解出方程;(2)利用配方法解出一元二次方程.【详解】解:(1)方程两边同乘(x−2),得2x+2=x−2解得,x=−4,检验:当x=−4时,x−2=−6≠0,∴x=−4是原方程的解;(2)x2−6x+6=0∴x2−6x=−6∴x2−6x+9=−6+9∴(x−3)2=3∴x−3=解得:.【点睛】本题考查的是分式方程的解法、一元二次方程的解法,掌握解分式方程的一般步骤、配方法解一元二次方程的一般步骤是解题的关键.21、(1)D(0,4),E(2,2),F(3,5),画图见解析;(2)(0,-4)【解析】
(1)根据平面直角坐标系中点的坐标的平移规律求解可得;(2)根据关于原点中心对称的规律“横纵坐标都互为相反数”即可求得.【详解】解:(1)如图,△DEF即为所求,点D的坐标是,即(0,4);点E的坐标是,即(2,2);点F的坐标为,即(3,5);(2)点D(0,4)关于原点中心对称的的坐标为(0,-4).【点睛】本题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.22、(1),;(2).【解析】
(1)由,,,直接利用三角形法则求解,即可求得答案;(2)由三角形法则可得:,继而可求得答案.【详解】解:(1)∵,,,∴,;(2),如图:【点睛】此题考查了平面向量的知识.注意掌握三角形法则的应用.23、(1)甲组平均每人投进个数为7个;(1)乙组表现更好.【解析】
(1)加权平均数:若n个数x1,x1,x3,…,xn的权分别是w1,w1,w3,…,wn,则x1w1+x1w1+…+xnwnw1+w1+…+wn叫做这n个数的加权平均数,根据加权平均数的定义计算即可.(1)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s1来表示,根据方差的计算公式结合平均数进行计算即可.【详解】解:(1)甲组平均每人投进个数:(个;(1)甲组方差:,乙组的方差为3.1,3.1<3.4所以从成绩稳定性角度看,乙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川甘孜州大学生乡村医生专项计划招聘考试真题2024
- 长郡知识竞赛培训课件
- 安防系统售后服务方案及措施
- 2024年省燃气经营企业从业人员考试(压缩天然气场站工)经典试题及答案四
- 专题11 强调句的用法 (学生版)-2025年新高一英语暑假衔接讲练 (人教版)
- 2025年煤矿企业主要负责人安管能力考试模拟题及答案
- 难点详解人教版八年级物理上册第6章质量与密度-密度综合练习试题(含答案及解析)
- 2025年山西省煤矿安全生产管理人员安全生产知识和管理能力考试全真模拟试题及答案
- 2025年道路运输企业主要负责人和安全生产管理人员考试(主要负责人)考前模拟试题及答案
- 2025年煤矿企业主要负责人安全生产知识和管理能力考试练习题及答案
- 2024年太原武宿机场航空产业集团招聘笔试冲刺题(带答案解析)
- 现代礼仪与沟通(大学生礼仪沟通课程)全套教学课件
- 严重精神障碍患者家属护理教育
- 坚持立足中国又面向世界讲解
- 《昆虫的美食》课件
- 制程工序能力分析报告
- TRIZ试题库资料整理
- 双室平衡容器原理
- 焊接热源及其热作用
- 等腰三角形的性质市公开课金奖市赛课一等奖课件
- 生产车间行为规范
评论
0/150
提交评论