湖北省武汉江汉区四校联考2023年八年级数学第二学期期末调研试题含解析_第1页
湖北省武汉江汉区四校联考2023年八年级数学第二学期期末调研试题含解析_第2页
湖北省武汉江汉区四校联考2023年八年级数学第二学期期末调研试题含解析_第3页
湖北省武汉江汉区四校联考2023年八年级数学第二学期期末调研试题含解析_第4页
湖北省武汉江汉区四校联考2023年八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A. B. C. D.2.如图,平行四边形中,的平分线交于,,,则的长()A.1 B.1.5 C.2 D.33.在▱ABCD中,对角线AC,BD交于点O,下列结论错误的是()A.∠ABO=∠CDO B.∠BAD=∠BCDC.AB=CD D.AC⊥BD4.如图,矩形的面积为28,对角线交于点;以、为邻边作平行四边形,对角线交于点;以、为邻边作平行四边形;…依此类推,则平行四边形的面积为()A. B. C. D.5.某校规定学生的平时作业,期中考试,期末考试三项成绩分别是按30%、30%、40%计人学期总评成绩,小明的平时作业,期中考试,期末考试的英语成绩分别是93分、90分、96分,则小明这学期的总评成绩是()A.92 B.90 C.93 D.93.36.直线y=x-3与x轴的交点坐标为()A.0,3 B.3,0 C.-3,0 D.0,-37.甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手

方差

0.023

0.018

0.020

0.021

则这10次跳绳中,这四个人发挥最稳定的是()A.甲 B.乙 C.丙 D.丁8.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.69.点P(2,﹣3)关于y轴的对称点的坐标是()A.(2,3) B.(﹣2,﹣3) C.(﹣2,3) D.(﹣3,2)10.下列各式中,能用公式法分解因式的是()①;②;③;④;⑤A.2个 B.3个 C.4个 D.5个11.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A.①② B.②③ C.①③ D.①②③12.等于()A.2 B.0 C. D.-2019二、填空题(每题4分,共24分)13.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.14.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.15.若函数是正比例函数,则m=__________.16.如图,矩形ABCD中,点E、F分别在AB、CD上,EF∥BC,EF交BD于点G.若EG=5,DF=2,则图中两块阴影部分的面积之和为______.17.已知.若整数满足.则=_________.18.已知四边形ABCD为菱形,其边长为6,,点P在菱形的边AD、CD及对角线AC上运动,当时,则DP的长为________.三、解答题(共78分)19.(8分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?20.(8分)如图,在平面直角坐示系xOy中,直线与直线交于点A(3,m).(1)求k,m的値;(2)己知点P(n,n),过点P作垂直于y轴的直线与直线交于点M,过点P作垂直于x轴的直线与直线交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.21.(8分)如图:是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①________②____________________________(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.22.(10分)为了解某校八年级学生每周平均课外阅读时间的情况,随机抽查了该校八年级部分学生,对其每周平均课外阅读时间进行统计,根据统计数据绘制成如图的两幅尚不完整的统计图:(1)本次共抽取了多少人?并请将图1的条形图补充完整;(2)这组数据的众数是________;求出这组数据的平均数;(3)若全校有1500人,请你估计每周平均课外阅读时间为3小时的学生多少人?23.(10分)市教育局为了解本市中学生参加志愿者活动情况,随机拍查了某区部分八年级学生一学年来参加志愿者活动的次数,并用得到的数据绘制了如下两幅不完整的统计图.(1)求参加这次调查统计的学生总人数及这个区八年级学生平均每人一学年来参加志愿者活动的次数;(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该区共有八年级学生人,请你估计“活动次数不少于次”的学生人数大约多少人.24.(10分)用圆规和直尺作图,不写作法,保留作图痕迹.已知及其边上一点.在内部求作点,使点到两边的距离相等,且到点,的距离相等.25.(12分)请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.26.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据正比例函数与一次函数的图象性质作答.【详解】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当1<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<1时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<1,所以两函数交点的横坐标小于1.故选:C.【点睛】本题考查一次函数的图象性质,正比例函数的图象性质,关键是由k的取值确定函数所在的象限.2、C【解析】

根据平行四边形的性质及为角平分线可知:,又有,可求的长.【详解】根据平行四边形的对边相等,得:,.根据平行四边形的对边平行,得:,,又,.,.故选:.【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.3、D【解析】

由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,对角相等;两直线平行,内错角相等;即可求得答案.【详解】解:∵四边形ABCD是平行四边形,

∴AB=CD,AD=BC,AB∥CD,∠BAD=∠BCD,∴∠ABO=∠CDO.所以A、B、C正确.

故选:D.【点睛】本题考查平行四边形的性质.注意平行四边形的对边相等,对角相等,对角线互相平分定理的应用是解此题的关键.4、C【解析】

设矩形ABCD的面积为S,则平行四边形AOC1B的面积=矩形ABCD的面积=S,平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…,平行四边形AOn-1CnB的面积=,平行四边形AOnCn+1B的面积=,即可得出结果.【详解】解:设矩形ABCD的面积为S根据题意得:平行四边形AOC1B的面积=矩形ABCD的面积=S平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…平行四边形AOn-1CnB的面积=∴平行四边形AOnCn+1B的面积=∴平行四边形的面积=故选C.【点睛】本题考查了矩形的性质、平行四边形的性质、规律推论等知识,熟练掌握矩形的性质和平行四边形的性质,得出平行四边形AOnCn+1B的面积=是解题的关键.5、D【解析】

小明这学期总评成绩是平时作业、期中练习、期末考试的成绩与其对应百分比的乘积之和.【详解】解:小明这学期的总评成绩是93×30%+90×30%+96×40%=93.3(分)故选:D.【点睛】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.6、B【解析】

令y=0,求出x的值即可得出结论.【详解】解:令y=0,则x=3,∴直线y=x-3与x轴的交点坐标为(3,0).故选:B.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7、B【解析】试题分析:方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.由S乙2<S丙2<S丁2<S甲2,∴这10次跳绳中,这四个人发挥最稳定的是乙.故选B.考点:方差,算术平均数.8、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.9、B【解析】试题分析:点P(2,-3)关于y轴的对称点的坐标是(-2,-3).故选B.考点:关于x轴、y轴对称的点的坐标.10、B【解析】

根据各个多项式的特点,结合平方差公式及完全平方公式即可解答.【详解】①不能运用公式法分解因式;②能运用平方差公式分解因式;③不能运用公式法分解因式;④能运用完全平方公式分解因式;⑤能运用完全平方公式分解因式.综上,能用公式法分解因式的有②④⑤,共3个.故选B.【点睛】本题考查了运用公式法分解因式,熟练运用平方差公式及完全平方公式分解因式是解题的关键.11、A【解析】

连接AP,由已知条件利用角平行线的判定可得∠1=∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2=∠3,得到∠1=∠3,得QP∥AR,答案可得.【详解】连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.故选A.【点睛】本题主要考查角平分线的判定和平行线的判定;准确作出辅助线是解决本题的关键,做题时要注意添加适当的辅助线,是十分重要的,要掌握.12、C【解析】

根据0指数幂和负整数指数幂的运算法则计算即可得答案.【详解】=1×=,故选:C.【点睛】本题考查0指数幂及负整数指数幂,任何不为0的数的0次幂都等于1,熟练掌握运算法则是解题关键.二、填空题(每题4分,共24分)13、【解析】

先找出中心对称图形有平行四边形、正方形和圆3个,再直接利用概率公式求解即可求得答案.【详解】解:张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,随机摸出1张,卡片上的图形是中心对称图形的概率是,故答案为:.【点睛】本题主要考查了中心对称图形和概率公式.用到的知识点为:概率所求情况数与总情况数之比.14、.【解析】

试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.15、2【解析】

根据正比例函数的定义可得|m|-1=1,m+2≠0.【详解】因为函数是正比例函数,所以|m|-1=1,m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义.理解定义是关键.16、1.【解析】

由矩形的性质可得S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,可得S四边形AEGM=S四边形GFCN,可得S△AEG=S△FGC=5,即可求解.【详解】解:如图,过点G作MN⊥AD于M,交BC于N,

∵EG=5,DF=2,

∴S△AEG=×5×2=5

∵AD∥BC,MN⊥AD

∴MN⊥BC,且∠BAD=∠ADC=∠DCB=∠ABC=90°,EF∥BC,

易证:四边形AMGE是矩形,四边形MDFG是矩形,四边形GFCN是矩形,四边形EGNB是矩形

∴S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,

∴S四边形AEGM=S四边形GFCN,

∴S△AEG=S△FGC=5

∴两块阴影部分的面积之和为1.

故答案为:1.【点睛】本题考查矩形的性质,证明S△AEG=S△FGC=5是解题的关键.17、2【解析】

根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.【详解】解:,∴解得:.∵为整数,.∴∴故答案为:2;【点睛】本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.18、2或或【解析】

分以下三种情况求解:(1)点P在CD上,如图①,根据菱形的边长以及CP1=2DP1可得出结果;(2)点P在对角线AC上,如图②,在三角形CDP2中,可得出∠P2DC=90°,进而可得出DP2的长;(3)当点P在边AD上,如图③,过点D作于点F,过点作于点E,设,则,再用含x的代数式表示出CE,EP3,CP3的长,根据勾股定理列方程求解即可.【详解】解:(1)当点P在CD上时,如解图①,,,;(2)当点P在对角线AC上时,如解图②,,.当时,,;图①图②(3)当点P在边AD上时,如解图③,过点D作于点F,过点作于点E,设,则,,,,,,,.,在中,由勾股定理得,解得,(舍).综上所述,DP的长为2或或.故答案为:2或或.【点睛】本题主要考查菱形的性质,含30°直角三角形的性质以及勾股定理,在解答无图题时注意分类讨论,避免漏解.

错因分析较难题.出错原因:①不能全面考虑所有情况,即根据动点在每一条边上进行分类讨论求解;②在第三种情况下不能将已知条件有效利用,转化到一个三角形中通过勾股定理列方程求解.

三、解答题(共78分)19、(1)21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】

(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.20、(1)k=-2;(2)n的取值范围为:或【解析】

(1)把A点坐标代入y=x-2中,求得m的值,再把求得的A点坐标代入y=kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN≤2PM,列出n的不等式,再求得结果.【详解】(1)∵直线y=kx+7与直线y=x-2交于点A(3,m),∴m=3k+3,m=1.∴k=-2.(2)∵点P(n,n),过点P作垂宜于y轴的直线与直线y=x-2交于点M,∴M(n+2,n).∴PM=2.∴PN≤2PM,∴PN≤4.∵过点P作垂直于x轴的直线与直线y=kx+7交于点N,k=-2,∴N(n,-2n+7).∴PN=|3n-7|.当PN=4时,如图,即|3n-7|=4,∴n=l或n=∵P与N不重合,∴|3n-7|0.∴当PN≤4(即PN≤2PM)吋,n的取值范围为:或【点睛】本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.21、(1)11;(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等;(3).【解析】试题分析:图象是分段函数,需要分别观察x轴y轴表示的意义,再利用图象过已知点,利用待定系数法求函数关系式.(1)由图知当行使8千米时,收费应为11元.(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等(3)设函数是y=kx+b(k图象过(3,5)(8,11),所以,解得,所以(x).22、(1)60人,图见解析;(2)众数是3,平均数是2.75;(3)500人.【解析】

(1)根据统计图中的数据可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】解:(1)由图2知阅读时间为2小时的扇形图圆形角为90°,即阅读时间为2小时的概率为,再根据图1可知阅读2小时的人数为15人,所以本次共抽取了15÷=60名学生,阅读3小时的学生有:60-10-15-10-5=20(名),补充完整的条形统计图如下图所示;(2)由条形统计图可得,这组数据的众数是3,这组数据的平均数是:;(3)1500×=500(人),答:课外阅读时间为3小时的学生有500人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、加权平均数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23、(1)1000,4.2;(2)众数是次,中位数是次;(3)1950【解析】

(1)用350÷35%即可求出参加这次调查的学生总人数;再利用平均数即可求出这个区八年级学生平均每人一年来参加志愿者活动的次数;(2)根据中位数、众数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论