




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为()
A.(2,0) B.(,0) C.(,0) D.(,0)2.在中,,,,点为边上一动点,于点,于点,则的最小值为()A. B. C. D.3.已知一个多边形的内角和是它的外角和的两倍,那么它的边数为()A.8 B.6 C.5 D.44.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高.年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是()A.①③ B.①②③ C.①②④ D.①②③④5.童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图中能反映y与x的函数关系式的大致图象是()A. B. C. D.6.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4D.-40是不等式2x<-8的一个解7.若A(2,y1),B(3,y2)是一次函数y=-3x+1的图象上的两个点,则y1与y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定8.下列长度的三条线段能组成直角三角形的是()A.,, B.,, C.,, D.,,9.函数与在同一坐标系内的图像可能是()A. B.C. D.10.若一次函数y=mx+n中,y随x的增大而减小,且知当x>2时,y<0,x<2时,y>0,则m、n的取值范围是.()A.m>0,n>0 B.m<0,n<0 C.m>0,n<0 D.m<0,n>0二、填空题(每小题3分,共24分)11.若数使关于的不等式组,有且仅有三个整数解,则的取值范围是______.12.某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线________.13.如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD长为13米,则河堤的高BE为米.14.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.15.计算:=________.16.在平面直角坐标系中,已知一次函数y=x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”).17.若分式的值为0,则x=_____.18.若数据,,…,的方差为6,则数据,,…,的方差是______.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD.求∠BDC的度数.20.(6分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.(1)求直线y=kx+b的表达式;(2)当x取何值时,y>1.21.(6分)如图,已知△ABC.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题.(1)作∠ABC的平分线BD、交AC于点D;(2)作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE,DF;(3)写出你所作出的图形中的相等线段.22.(8分)如图,矩形纸片ABCD中,AB=8,AD=6,折叠纸片使AD边落在对角线BD上,点A落在点A′处,折痕为DG,求AG的长.23.(8分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.24.(8分)直线y=x+b与双曲线y=交于点A(﹣1,﹣5).并分别与x轴、y轴交于点C、B.(1)直接写出b=,m=;(2)根据图象直接写出不等式x+b<的解集为;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在,请求出D的坐标;若不存在,请说明理由.25.(10分)(1)解不等式组:(2)解分式方程:.26.(10分)已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.
参考答案一、选择题(每小题3分,共30分)1、C【解析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示-1,可得M点表示的数.解:AC=,
则AM=,
∵A点表示-1,
∴M点表示的数为:-1,
故选C.“点睛”此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2、B【解析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】解:∵在△ABC中,AB=3,AC=1,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.1,∴EF的最小值是2.1.故选B.【点睛】题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.3、B【解析】
根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】解:设多边形的边数是n,则(n−2)•180=2×360,解得:n=6,故选:B.【点睛】本题考查了多边形的内角和定理以及外角和定理,正确理解定理是关键.4、A【解析】
根据条形统计图中的信息对4个结论进行判断即可.【详解】由条形统计图可知,从2012年到2018年,博物馆参观人数呈现持续增长态势,故①正确;从2012年到2018年增加了10.08-5.64=4.44(亿人次),平均每年增加4.44÷6=0.74(亿人次)则2019年将会达到10.08+0.74=10.82(亿人次),故②正确;2013年增加了6.34-5.64=0.7(亿人次),2014年增加了7.18-6.34=0.84(亿人次),2015年增加了7.81-7.18=0.63(亿人次),2016年增加了8.50-7.81=0.69(亿人次),2017年增加了9.72-8.50=1.22(亿人次),2018年增加了10.08-9.72=0.36(亿人次),则2017年增幅最大,故③正确;设从2016年到2018年年平均增长率为x,则8.50(1+x)2=10.08解得x≈0.09(负值已舍),即年平均增长约为9%,故④错误;综上可得正确的是①②③.故选:B.【点睛】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.5、A【解析】
根据步行速度慢,路程变化慢,等车时路程不变化,乘公交车时路程变化快,看比赛时路程不变化,回家时乘车路程变化快,可得答案.【详解】步行先变化慢,等车路程不变化,乘公交车路程变化快,看比赛路程不变化,回家路程变化快.故选A.【点睛】本题考查了函数图象,根据童童的活动得出函数图形是解题关键,注意选项B中步行的速度快不符合题意.6、C【解析】
对于A、B选项,可分别写出满足题意的不等式的解,从而判断A、B的正误;对于C、D,首先分别求出不等式的解集,再与给出的解集或解进行比较,从而判断C、D的正误.【详解】A.由x<5,可知该不等式的整数解有4,3,2,1,-1,-2,-3,-4等,有无数个,所以A选项正确,不符合题意;B.不等式x>−5的负整数解集有−4,−3,−2,−1.故正确,不符合题意;C.不等式−2x<8的解集是x>−4,故错误.D.不等式2x<−8的解集是x<−4包括−40,故正确,不符合题意;故选:C.【点睛】本题是一道关于不等式的题目,需结合不等式的解集的知识求解;7、C【解析】
先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【详解】解:∵一次函数y=-3x+1中,k=-3<0,∴y随着x的增大而减小.∵A(1,y1),B(3,y1)是一次函数y=-3x+1的图象上的两个点,1<3,∴y1>y1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.8、B【解析】
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角;【详解】A.2+3≠4,故该三角形不是直角三角形;B.3+4=5,故该三角形是直角三角形;C.4+5≠6,故该三角形不是直角三角形;D.5+6≠7,故该三角形不是直角三角形.故选B【点睛】此题考查勾股定理逆定理,解题关键在于理解勾股定理逆定理的内容.9、B【解析】
分k>0与k<0两种情况分别进行讨论即可得.【详解】当k>0时,y=kx-1的图象过一、三、四象限,的图象位于第一、三象限,观察可知选项B符合题意;当k<0时,y=kx-1的图象过二、三、四象限,的图象位于第二、四象限,观察可知没有选项符合题意,故选B.【点睛】本题考查了反比例函数图象与一次函数图象的结合,熟练掌握反比例函数的图象与性质以及一次函数的图象与性质是解题的关键.10、D【解析】
根据图象和系数的关系确定m<0且直线经过点(2,0),将(2,0)代入求得.【详解】解:根据题意,m<0且直线经过点(2,0),∴,∴,∴m<0,n>0,故选:D.【点睛】本题考查了一次函数图象和系数的关系,一次函数图象上点的坐标特征,能够准确理解题意是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m的范围.【详解】解:解不等式组得:由有且仅有三个整数解即:3,2,1.则:解得:【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于m的不等式组是解题关键.12、20cm【解析】
根据等腰梯形的性质及三角形中位线的性质可推出四边形EFGH为菱形,根据菱形的性质可求得其边长,再根据三角形中位线的性质即可求得梯形对角线AC的长度.【详解】连接BD∵四边形ABCD是等腰梯形∴AC=BD∵各边的中点分别是E.F.G、H∴HG=AC=EF,EH=BD=FG∴HG=EH=EF=FG,∴四边形EFGH是菱形∵四边形EFGH场地的周长为40cm∴EF=10cm∴AC=20cm【点睛】本题考查菱形的判定及等腰梯形的性质,熟练掌握菱形的基本性质是解题关键.13、1【解析】在Rt△ABE中,根据tan∠BAE的值,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.解:作CF⊥AD于F点,则CF=BE,∵CD的坡度i=1:2.4=CF:FD,∴设CF=1x,则FD=12x,由题意得CF2+FD2=CD2即:(1x)2+(12x)2=132∴x=1,∴BE=CF=1故答案为1.本题主要考查的是锐角三角函数的定义和勾股定理的应用.14、1.【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.15、﹣1【解析】
利用二次根式的性质将二次根式化简得出即可.【详解】解:=|1-|=﹣1.
故答案为:﹣1.【点睛】本题考查二次根式的化简求值,正确化简二次根式是解题关键.16、【解析】
根据一次函数的性质,k>0时,y随x的增大而增大;k<0时,y随x的增大而减小,从而得出答案.【详解】一次函数y=x+1,,y随x的增大而减小∵x1<x2∴y1>y2故答案为:>【点睛】本题考查了一次函数的增减性,熟练掌握相关知识点是解题关键.17、1【解析】
直接利用分式的值为零,则分子为零分母不为零,进而得出答案.【详解】∵分式的值为0,∴x2-1=0,(x+1)(x-3)≠0,解得:x=1.故答案为1.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.18、1.【解析】
根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.【详解】原来的方差,现在的方差==1,方差不变.故答案为:1.【点睛】此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.三、解答题(共66分)19、(1)证明见解析;(2)90°.【解析】试题分析:(1)、根据旋转图形的性质可得:CD=CE,∠DCE=90°,根据∠ACB=90°得出∠BCD=90°-∠ACD=∠FCE,结合已知条件得出三角形全等;(2)、根据全等得出∠BDC=∠E,∠BCD=∠FCE,从而得出∠DCE=90°,然后根据EF∥CD得出∠BDC=90°.试题解析:(1)、∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE,在△BCD和△FCE中,CB=CF∵BCD=∠FCE,CD=CE,CB=CF,∠BCD=∠FCE∴△BCD≌△FCE(SAS).(2)、由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°-∠DCE=90°,∴∠BDC=90°.考点:(1)、旋转图形的性质;(2)、三角形全等的证明与性质.20、(1)y=x+11;(2)x>﹣20时,y>1.【解析】
(1)利用待定系数法求一次函数解析式;(2)解不等式x+11>1即可.【详解】(1)根据题意得,解得,所以直线解析式为y=x+11;(2)解不等式x+11>1得x>﹣20,即x>﹣20时,y>1.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.21、(1)射线BD即为所求.见解析;(2)直线BD即为所求.见解析;(3)EB=ED=FD=FB,BO=DO,EO=FO.【解析】
(1)根据尺规作角平分线即可完成(2)根据线段垂直平分线的性质即可(3)根据线段垂直平分线的性质和全等三角形的知识即可找到相等的线段【详解】(1)射线BD即为所求.(2)直线BD即为所求.(3)记EF与BD的交点为O.因为EF为BD的垂直平分线,所以EB=ED,FB=FD,BO=DO,∠EOB=∠FOB=90°.因为BD为∠ABC的角平分线,所以∠ABD=∠CBD.因为∠ABD=∠CBD,BO=BO,∠EOB=∠FOB=90°,所以△EOB≌△FOB(ASA).所以EO=FO,BE=BF.因为EB=ED,FB=FD,BE=BF,所以EB=ED=FD=FB.因此,图中相等的线段有:EB=ED=FD=FB,BO=DO,EO=FO.【点睛】此题考查尺规作图,段垂直平分线的性质和全等三角形,解题关键在于掌握作图法则22、AG=1.【解析】
由折叠的性质得∠BA′G=∠DA′G=∠A=90°,A′D=6,由勾股定理得BD=10,得出A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得出方程,解方程即可得出结果.【详解】∵矩形ABCD折叠后AD边落在BD上,∴∠BA′G=∠DA′G=∠A=90°,∵AB=8,AD=6,∴A′D=6,BD===10,∴A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得:x2+42=(8-x)2,解得:x=1,∴AG=1.【点睛】本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.23、证明见解析【解析】
先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【详解】∵BF∥CE,CF∥BE,∴四边形BECF是平行四边形.又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,∴∠EBC=∠ECB=45°,∴∠BEC=90°,BE=CE,∴四边形BECF是正方形【点睛】本题主要考查平行四边形及正方形的判定.24、(1)-1,2;(2)x<﹣1或0<x<2;(3)存在,D的坐标是(6,0)或(20,0).【解析】
(1)把A的坐标分别代入一次函数与反比例函数的解析式,即可求得b和m的值;(2)根据图象即可直接写出,即反比例函数的图象在一次函数的图象上部的部分x的取值;(3)求得△OAB的边长,点D在x轴的正半轴上,可以分D在线段OC上(不在O点)或线段OC的延长线上两种情况讨论,依据相似三角形的对应边的比相等即可求得.【详解】解:(1)把A(﹣1,﹣2)代入y=x+b得:﹣2=﹣1+b,解得:b=﹣1.把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗物资采购风险管理与控制
- 代买货物合同范例
- 买卖门市定金合同范例
- 2025年小学班主任工作总结经验教训总结模版
- 买卖大型设备合同范例
- 公司配件采购合同范例
- 广电工作者个人年度工作总结模版
- 人口健康信息分析与教育引导
- erp系统维护合同范例
- 专职教室聘用合同范例
- GB/T 11032-2020交流无间隙金属氧化物避雷器
- 煤矿爆破工培训
- 液化石油气安全标签
- 水车租赁合同范本(3篇)
- 空港新城特勤消防站施工组织设计
- 北师大版三年级数学下册竞赛卷
- 2022山东历史高考答题卡word版
- 中医医院儿科建设与管理指南(试行)
- Q∕SY 1143-2008 三维地质建模技术要求
- 大地构造学派及其构造单元汇总
- 丽声北极星分级绘本第二级上Dinner for a Dragon 课件
评论
0/150
提交评论