2023年湖北省华中学师范大一附中八年级数学第二学期期末检测试题含解析_第1页
2023年湖北省华中学师范大一附中八年级数学第二学期期末检测试题含解析_第2页
2023年湖北省华中学师范大一附中八年级数学第二学期期末检测试题含解析_第3页
2023年湖北省华中学师范大一附中八年级数学第二学期期末检测试题含解析_第4页
2023年湖北省华中学师范大一附中八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列计算正确的是()A.×= B.+= C. D.-=2.如图,点E,F是▱ABCD对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB=∠CFD中,添加一个条件,使四边形DEBF是平行四边形,可添加的条件是()A.①②③ B.①②④ C.①③④ D.②③④3.已知反比例函数,下列结论中不正确的是()A.其图像分别位于第二、四象限B.其图像关于原点对称C.其图像经过点(2,-4)D.若点都在图像上,且,则4.在直角坐标系中,点关于原点对称的点为,则点的坐标是()A. B. C. D.5.如图,已知直线与相交于点(2,),若,则的取值范围是()A. B. C. D.6.如图,在平面直角坐标系中,菱形ABCO的顶点O为坐标原点,边CO在x轴正半轴上,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交菱形对角线BO于点D,DE⊥x轴于点E,则CE长为()A.1 B. C.2﹣ D.﹣17.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°,则∠OAB的度数为()A.40° B.50° C.60° D.70°8.如果把分式中的x、y的值都扩大为原来的3倍,那么分式的值()A.不变 B.扩大为原来的3倍C.扩大为原来的6倍 D.扩大为原来的9倍9.已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九边形 B.八边形 C.七边形 D.六边形10.下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序().①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A.①②④③B.③④②①C.①④②③D.③②④①11.矩形、菱形、正方形都具有的性质是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线互相平分且相等12.函数与在同一坐标系中的图象可能是()A. B.C. D.二、填空题(每题4分,共24分)13.计算:.14.如图,Rt△ABC中,∠BAC=90°,AB=AC,将△ABC绕点C顺时针旋转40°,得到△,与AB相交于点D,连接,则∠的度数是________.15.已知一组数据11、17、11、17、11、24共六个数,那么数11在这组数据中的频率是______.16.如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为_____.17.如图,于点E,于点F,,求证:.试将下面的证明过程补充完整填空:证明:,已知______同位角相等,两直线平行,两直线平行,同旁内角互补,又已知,______,同角的补角相等______内错角相等,两直线平行,______18.如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是_________.三、解答题(共78分)19.(8分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.(1)求证:四边形是矩形;(2)求四边形的周长.20.(8分)如图,在边长为1个单位长度的小正方形组成的网络中,给出了△ABC和△DEF(网点为网格线的交点)(1)将△ABC向左平移两个单位长度,再向上平移三个单位长度,画出平移后的图形△A1B2C3;(2)画出以点O为对称中心,与△DEF成中心对称的图形△D2E2F2;(3)求∠C+∠E的度数.21.(8分)如图1,已知直线:交轴于,交轴于.(1)直接写出的值为______.(2)如图2,为轴负半轴上一点,过点的直线:经过的中点,点为轴上一动点,过作轴分别交直线、于、,且,求的值.(3)如图3,已知点,点为直线右侧一点,且满足,求点坐标.22.(10分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.(1)试说明四边形AECF是平行四边形.(2)若AC=2,AB=1.若AC⊥AB,求线段BD的长.23.(10分)如图,已知点A(6,0),B(8,5),将线段OA平移至CB,点D(x,0)在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)求对角线AC的长;(2)△ODC与△ABD的面积分别记为S1,S2,设S=S1﹣S2,求S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等,如果存在,请求出x的值(或取值范围);如果不存在,请说明理由.24.(10分)如图,在□ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点。求证:四边形BEDF为平行四边形25.(12分)张明、王成两位同学在初二学年10次数学单元检测的成绩(成绩均为整数,且个位数为0)如图所示利用图中提供的信息,解答下列问题:(1)完成下表:姓名平均成绩中位数众数方差(s2)张明8080王成260(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率较高的同学是;(3)根据图表信息,请你对这两位同学各提出学习建议.26.如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).(1)求反比例函数与一次函数的函数关系式;(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;(3)连接AO、BO,求△ABO的面积;(4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据二次根式的运算即可判断.【详解】A.×=,正确;B.+不能计算,故错误;C.,故错误;D.-=,故错误;故选A.【点睛】此题主要考查二次根式的计算,解题的关键是熟知二次根式的运算法则.2、D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.3、D【解析】

根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.反比例函数中,,此函数的图象在二、四象限,故本选项说法正确,不合题意;B.反比例函数的图像是关于原点的中心对称,故本选项说法正确,不合题意;C.∵,图象必经过点(2,-4),故本选项说法正确,不合题意;D.反比例函数中,,此函数的图象在每一象限内随的增大而增大,∴当,在同一象限时则,在不同象限时则,故本选项错误,符合题意.故选D.【点睛】本题考查的是反比例函数的性质,即反比例函数的图象是双曲线:(1)当时,双曲线的两支分别位于第一、第三象限,在每一象限内随的增大而减小;(2)当,双曲线的两支分别位于第二、第四象限,在每一象限内随的增大而增大.4、B【解析】

根据坐标系中关于原点对称的点的坐标特征:原坐标点为,关于原点对称:横纵坐标值都变为原值的相反数,即对称点为可得答案.【详解】解:关于原点对称的点的坐标特征:横纵坐标值都变为原值的相反数,所以点有关于原点O的对称点Q的坐标为(-2,-1).故选:B【点睛】本题考查了对称与坐标.设原坐标点为,坐标系中关于对称的问题分为三类:1.关于轴对称:横坐标值不变仍旧为,纵坐标值变为,即对称点为;2.关于轴对称:纵坐标值不变仍旧为,横坐标值变为即对称点为;3.关于原点对称:横纵坐标值都变为原值的相反数,即对称点为.熟练掌握变化规律是解题关键.5、B【解析】试题解析:根据题意当x>1时,若y1>y1.故选B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6、C【解析】

由菱形ABCO,∠AOC=60°,由解直角三角形可以设A(m,m),又点A在反比例函数的图像上,带入可以求出A的坐标,进而可以求出OA的长度,即OC可求.再根据菱形ABCO,∠AOC=60°,可知∠BOC=30°,可设E(n,0),则D(n,n),带入反比例函数的解析式可以求出E点坐标,于是CE=OC-OE,可求.【详解】解:∵四边形ABCO为菱形,∠AOC=60°,∴可设A(m,m),又∵A点在反比例函数y=上,∴m2=2,得m=(由题意舍m=-),∴A(,),OA=2,∴OC=OA=2,又∵四边形ABCO为菱形,∠AOC=60°,OB为四边形ABCO的对角线,∴∠BOC=30°,可设D(n,n),则E(n,0),∵D在反比例函数y=上,∴n2=2,解得n=(由题意舍n=-),∴E(,0),∴OE=,则有CE=OC-OE=2-.故答案选C.【点睛】掌握菱形的性质,理解“30°角所对应的直角边等于斜边的一半”,再依据勾股定理分别设出点A和点D的坐标,代入反比例函数的解析式.灵活运用菱形和反比例函数的性质和解直角三角形是解题的关键.7、A【解析】

首先根据题意得出平行四边形ABCD是矩形,进而求出∠OAB的度数.【详解】∵平行四边形ABCD的对角线AC,BD相交于点O,OA=OD,∴四边形ABCD是矩形,∵∠OAD=50°,∴∠OAB=40°.故选:A.【点睛】本题主要考查了平行四边形的性质,矩形的判定与性质,解题的关键是判断出四边形ABCD是矩形,此题难度不大.8、A【解析】

根据分式的基本性质即可求出答案【详解】解:∵,∴分式的值不变.故选:A.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.9、A【解析】

根据正多边形每个内角度数的求算公式:建立方程求解即可.【详解】正多边形每个内角的度数求算公式:,建立方程得:解得:故答案选:A【点睛】本题考查正多边形的内角与边数,掌握相关的公式是解题关键.10、D【解析】本题考查的是变量关系图象的识别,借助生活经验,弄明白一个量是如何随另一个量的变化而变化是解决问题的关键.①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系),路程是时间的正比例函数,对应第四个图象;②向锥形瓶中匀速注水(水面的高度与注水时间的关系),高度是注水时间的函数,由于锥形瓶中的直径是下大上小,故先慢后快,对应第二个函数的图象;③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系),温度计的读数随时间的增大而增大,由于温度计的温度在放入热水前有个温度,故对应第一个图象;④一杯越来越凉的水(水温与时间的关系),水温随时间的增大而减小,由于水冷却到室温后不变化,故对应第三个图象;综合以上,得到四个图象对应的情形的排序为③②④①.11、B【解析】

矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.【详解】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.

故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.

故选:B.【点睛】本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.12、D【解析】

根据k值的正负,判断一次函数和反比例函数必过的象限,二者一致的即为正确答案.【详解】在函数与中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限,故选:D.【点睛】本题考查了一次函数与反比例函数的图象和性质,掌握一次函数和反比例函数的图象和性质是解题的关键.二、填空题(每题4分,共24分)13、1.【解析】

解:.故答案为114、20【解析】

由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴△ABC≌△A'B'C∴AC=A'C,∠ACA′=40°,∠BAC=∠B'A'C=90°∴∠AA'C=70°=∠A'AC∴∠B'A'A=∠B'A'C−∠AA'C=20°.【点睛】本题考查全等三角形的判定与性质,等腰直角三角形,旋转的性质.旋转前后对应线段相等,对应角相等,对应图形全等.在旋转过程中,一定要仔细读题,能理解∠ACA′即为旋转角等于40°,AC和A'C为一组对应线段.15、0.1【解析】

根据公式:频率=即可求解.【详解】解:11的频数是3,则频率是:=0.1.故答案是:0.1.【点睛】本题考查了频率公式:频率=,理解公式是关键.16、【解析】

根据勾股定理求出斜边长,根据直角三角形的性质得到CM=,CN=,∠MCB=∠ECN,∠MCE=∠NCD,根据勾股定理计算即可.【详解】解:如图连接CM、CN,由勾股定理得,AB=DE=,△ABC、△CDE是直角,三角形,M,N为斜边的中点,CM=CN=,∠MCB=∠ECN,∠MCE=∠NCD,∠MCN=,MN=.因此,本题正确答案是:.【点睛】本题主要考查三角形的性质及计算,灵活做辅助线是解题的关键.17、垂直的定义;;BC;两直线平行,同位角相等

【解析】

根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.【详解】证明:,(垂直的定义),(同位角相等,两直线平行),(两直线平行,同旁内角互补),又,(同角的补角相等),(内错角相等,两直线平行),(两直线平行,同位角相等).故答案为:垂直的定义;;;两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质以及垂线的定义,熟练掌握平行线的判定与性质定理是解题的关键.18、15【解析】

根据平行四边形与中位线的性质即可求解.【详解】∵四边形ABCD为平行四边形,的周长是30,∴△ADC的周长为30,∵点、分别是平行四边形的两边、的中点.∴DE=AD,DF=CD,EF=AC,∴则的周长=×30=15.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及中位线的性质.三、解答题(共78分)19、(1)见详解;(2)【解析】

(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,即可得出结果.【详解】(1)证明:∵AE∥BC,DE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴四边形AEBD是矩形.(2)解:在Rt△ADC中,∠ADB=90°,AC=9,BD=CD=BC=3,∴AD=.∴四边形AEBD的周长=.【点睛】本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.20、(1)见解析;(2)见解析;(3)45°【解析】

(1)利用网格特点和平移的性质画出点A、B、C的对应点A1、B2、C3,从而得到△A1B2C3;(2)利用网格特点和中心对称的性质画出D、E、F的对应点D2、E2、F2,从而得到△D2E2F2;(3)利用平移和中心对称的性质得到∠C=∠A1C3B2,∠E=∠D2E2F2,则∠C+∠E=∠A1C3F2,连接A1F2,如图,利用勾股定理的逆定理证明△A1F2C3为等腰直角三角形得到∠A1C3F2=45°,从而得到∠C+∠E的度数.【详解】(1)如图,△A1B2C3为所作;(2)如图,△D2E2F2为所作;(3)∵△ABC平移后的图形△A1B2C3,∴∠C=∠A1C3B2,∵△DEF关于点O成中心对称的图形为△D2E2F2,∴∠E=∠D2E2F2,∴∠C+∠E=∠A1C3B2+∠D2E2F2=∠A1C3F2,连接A1F2,如图,A1F2==,A1C3==,F2C3==,∴A1F22+A1C32=F2C32,∴△A1F2C3为等腰直角三角形,∠F2A1C3=90°,∴∠A1C3F2=45°,∴∠C+∠E的度数为45°.【点睛】此题主要考查了作图--平移和中心对称、运用勾股定理的逆定理判断三角形是直角三角形的相关知识,解题的关键是正确确定组成图形的关键点在变换后的对应点的位置.21、(1)k=-1;(2)或;(3)【解析】

(1)将代入,求解即可得出;(2)先求得直线为,用含t的式子表示MN,根据列出方程,分三种情况讨论,可得到或;(3)在轴上取一点,连接,作交直线于,作轴于,再证出,得到直线的解析式为,将代入,得,可得出.【详解】解:(1)将代入,得,解得.故答案为:(2)∵在直线中,令,得,∴,∵,∴线段的中点的坐标为,代入,得,∴直线为,∵轴分别交直线、于、,,∴,,∴,,∵,∴,分情况讨论:①当时,,解得:.②当时,,解得:.③当时,,解得:,舍去.综上所述:或.(3)在轴上取一点,连接,作交直线于,作轴于,∴,∴,∵,∴,∵,∴,∴,∴,∴,∴,∴,∴,,∴,∴,∴直线的解析式为,将代入,得,∴.【点睛】本题考查一次函数与几何的综合.要准确理解题意,运用数形结合、分类讨论的思想解答.22、(1)见解析;(2)BD=2.【解析】

(1)在平行四边形ABCD中,AC与BD互相平分,OA=OC,OB=OD,又E,F为OB,OD的中点,所以OE=OF,所以AC与EF互相平分,所以四边形AECF为平行四边形;

(2)首先根据平行四边形的性质可得AO=CO,BO=DO,再利用勾股定理计算出BO的长,进而可得BD的长.【详解】(1)证明:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F为OB,OD的中点,∴OE=OF,∴AC与EF互相平分,∴四边形AECF为平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AC=2,∴AO=2,∵AB=1,AC⊥AB,∴,∴BD=.【点睛】此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形对角线互相平分.23、(1);(2)D(x,0)(x>6)【解析】

(1)根据平移的性质可以求得点C的坐标,然后根据两点间的距离公式即可求得AC的长;(2)根据题意,可以分别表示出S1,S2,从而可以得到S关于x的函数解析式,由图和题目中的条件可以求得△CDB的面积,从而可以求得满足条件的点D的坐标,本题得以解决.【详解】(1)由题意知,将线段OA平移至CB,∴四边形OABC为平行四边形.又∵A(6,0),B(8,5),∴点C(2,5).过点C作CE⊥OA于E,连接AC,在Rt△CEA中,AC===.(2)∵点D的坐标为(x,0),若点D在线段OA上,即当0<x<6时,,,∴=5x-1.若点D在OA的延长线上,即当x>6时,,,∴=1.由上可得,∵,当0<x<6时,时,x=6(与A重合,不合题意,舍去);当x>6时,,点D在OA延长线上的任意一点处都可满足条件,∴点D所在位置为D(x,0)(x>6).【点睛】本题考查一次函数的应用、平移的性质、两点间的距离公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答.24、见解析;【解析】

欲证明四边形BFDE是平行四边形只要证明OE=OF,OD=OB.【详解】证明:∵四边形ABCD是平行四边形∴AO=CO,BO=DO.又∵点E,点F分别是OA,OC的中点∴EO=,FO=∴EO=FO∴四边形BEDF为平行四边形【点睛】本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.25、(1)张明:平均成绩80,方,60;王成:平均成绩80,中位,85,众,90;(2)王成;(3)张明学习成绩还需提高,优秀率有待提高.【解析】

(1)根据平均数、中位数、众数、方差的概念以及求解方法分别求解,填表即可;(2)分别计算两人的优秀率,然后比较即可;(3)比较这两位同学的方差,方差越小,成绩越稳定.【详解】(1)张明的平均成绩=(80+70+90+80+70+90+70+80+90+80)÷10=80,张明的成绩的方差=[4×(80-80)2+3×(70-80)2+3×(90-80)2]÷10=60,王成的平均成绩=(80+60+100+70+90+50+90+70+90+100)÷10=80,王成的成绩按大小顺序排列为50、60、70、70、80、90、90、90、100、100,中间两个数为80,90,则张明的成绩的中位数为85,王成的成绩中90分出现的次数最多,则王成的成绩的众数为90,根据相关公式计算出结果,可以填得下表:姓名平均成绩中位数众数方差(s2)张明80808060王成808590260(2)如果将90分以上(含90分)的成绩视为优秀,则张明的优秀率为:3÷10=30%,王成的优秀率为:5÷10=50%,所以优秀率较高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论