




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如果式子有意义,那么x的范围在数轴上表示为()A. B.C. D.2.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数的图象上,且x1<x2<x3,()A.若<<,则++>0 B.若<<,则<0C.若<<,则++>0 D.若<<,则<03.如图,在平行四边形中,于点E,以点B为中心,取旋转角等于,将顺时针旋转,得到.连接,若,,则的度数为()A. B. C. D.4.已知一组数据a.b.c的平均数为5,方差为4,那么数据,,的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.105.如图,DE是的中位线,则与四边形DBCE的面积之比是()A. B. C. D.6.如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.D是BE的中点7.化简:()A.2 B.-2 C.4 D.-48.下列从左到右的变形,是因式分解的是A. B.C. D.9.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正确的编号是()A.①② B.②③ C.①②③ D.①②③④10.若分式方程+3=有增根,则a的值是()A.﹣1 B.0 C.1 D.211.一次函数y=﹣x+6的图象上有两点A(﹣1,y1)、B(2,y2),则y1与y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.y1≥y212.如图,将等边ABC向右平移得到DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为()A.2 B.4 C. D.2二、填空题(每题4分,共24分)13.元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程(千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.14.如图,在中,,,的面积是,边的垂直平分线分别交,边于点,.若点为边的中点,点为线段上一动点,则周长的最小值为__________.15.如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.16.某产品出现次品的概率为0.05,任意抽取这种产品400件,那么大约有_____件次品.17.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.18.如图,平行四边形AOBC中,对角线交于点E,双曲线(k>0)经过A,E两点,若平行四边形AOBC的面积为24,则k=____.三、解答题(共78分)19.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.20.(8分)如图1,直线与双曲线交于、两点,与轴交于点,与轴交于点,已知点、点.(1)求直线和双曲线的解析式;(2)将沿直线翻折,点落在第一象限内的点处,直接写出点的坐标;(3)如图2,过点作直线交轴的负半轴于点,连接交轴于点,且的面积与的面积相等.①求直线的解析式;②在直线上是否存在点,使得?若存在,请直接写出所有符合条件的点的坐标;如果不存在,请说明理由.21.(8分)如图,在平面直角坐标系中,已知点A(-3,0),B(0,-1),C(0,)三点.(1)求直线AB的解析式.(2)若点D在直线AB上,且DB=DC,尺规作图作出点D(保留作图痕迹),并求出点D的坐标.22.(10分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:①菜地离小明家多远?小明走到菜地用了多少时间?②小明给菜地浇水用了多少时间?③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?23.(10分)如图,在平面直角坐标系中,直线与轴、轴分别交于,两点.(1)反比例函数的图象与直线交于第一象限内的,两点,当时,求的值;(2)设线段的中点为,过作轴的垂线,垂足为点,交反比例函数的图象于点,连接,,当以,,为顶点的三角形与以,,为顶点的三角形相似时,求的值.24.(10分)如图,直线与坐标轴交于点、两点,直线与直线相交于点,交轴于点,且的面积为.(1)求的值和点的坐标;(2)求直线的解析式;(3)若点是线段上一动点,过点作轴交直线于点,轴,轴,垂足分别为点、,是否存在点,使得四边形为正方形,若存在,请求出点坐标,若不存在,请说明理由.25.(12分)(阅读材料)解方程:.解:设,则原方程变为.解得,,.当时,,解得.当时,,解得.所以,原方程的解为,,,.(问题解决)利用上述方法,解方程:.26.先化简,再求值:()÷,其中x=.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据二次根式有意义的条件可得x﹣1≥0,求出不等式的解集,再在数轴上表示.【详解】由题意得:x﹣1≥0,解得:x≥1,在数轴上表示为:故选D.【点睛】本题主要考查了二次根式有意义的条件,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.2、B【解析】
反比例函数的图像及x1<x2<x3分别进行判断即可【详解】反比例函数的图像及x1<x2<x3分别进行判断若<<,k为负在二四象限,且x1<x2<0,x3>0,则++不一定大于0,故A错;若<<,k为正在一三象限,x1<0,0<x2<x3,则<0,故B正确;若<<,k为负在二四象限,且x1<0,0<x2<x3,则++不一定大于0,故C错;若<<,k为正在一三象限,x1<x2<0,0<x3则>0,故D错误;故选B【点睛】熟练掌握反比例函数的图像及增减性是解决本题的关键3、D【解析】
根据平行四边形的性质得∠ABC=∠ADC=60°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=30°,然后根据旋转的性质得∠BA′E′=∠BAE=30°,于是可得∠DA′E′=160°.【详解】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°−50°=130°,∵AE⊥BE,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=130°+30°=160°.故答案为:D.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质.4、B【解析】
根据数据a,b,c的平均数以及方差即可求出a-2,b-2,c-2的平均数和方差.【详解】∵数据a,b,c的平均数是5,∴,∴,∴数据a-2,b-2,c-2的平均数是3,∵数据a,b,c的方差为4,∴∴a-2,b-2,c-2的方差所以B选项正确.【点睛】主要考查平均数和方差的公式计算以及灵活运用.5、B【解析】
首先根据DE是△ABC的中位线,可得△ADE∽△ABC,且DE:BC=1:2;然后根据相似三角形面积的比等于相似比的平方,求出△ADE与△ABC的面积之比是多少,进而求出△ADE与四边形DBCE的面积之比是多少即可.【详解】解:∵DE是△ABC的中位线,
∴△ADE∽△ABC,且DE:BC=1:2,
∴△ADE与△ABC的面积之比是1:4,
∴△ADE与四边形DBCE的面积之比是1:1.
故选:B.【点睛】(1)此题主要考查了三角形的中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.
(2)此题还考查了相似三角形的面积的比的求法,要熟练掌握,解答此题的关键是要明确:相似三角形面积的比等于相似比的平方.6、D【解析】
根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【详解】∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;D.无法判定,错误;故选D.7、A【解析】
根据二次根式的性质解答.【详解】解:.故选:A.【点睛】本题主要考查了根据二次根式的性质化简.解题的关键是掌握二次根式的性质.8、D【解析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.9、D【解析】
易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.【详解】解:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100﹣4×(100+2)=92(米);5a﹣4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③④.故选D.【点睛】考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.10、B【解析】
根据分式方程有增根可得出x=2是方程1+3(x-2)=a+1的根,代入x=2即可求出a值.【详解】解:∵分式方程+3=有增根,∴x=2是方程1+3(x-2)=a+1的根,
∴a=1.
故选:B.【点睛】本题考查分式方程的增根,熟记分式方程增根的定义是解题的关键.11、A【解析】试题分析:k=﹣1<0,y将随x的增大而减小,根据﹣1<1即可得出答案.解:∵k=﹣1<0,y将随x的增大而减小,又∵﹣1<1,∴y1>y1.故选A.【点评】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b(k、b为常数,k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.12、D【解析】
过点D作DH⊥CF于H,由平移的性质可得△DEF是等边三角形,由等边三角形的性质可求CH=1,DH=,由勾股定理可求解.【详解】解:如图,过点D作DH⊥CF于H,∵将等边△ABC向右平移得到△DEF,∴△DEF是等边三角形,∴DF=CF=2,∠DFC=60°,∵DH⊥CF,∴∠FDH=30°,CH=HF=1,∴DH=HF=,BH=BC+CH=3,∴BD===2,故选:D.【点睛】本题主要考查勾股定理,平移的性质,等边三角形的性质,掌握这些性质是解题的关键.二、填空题(每题4分,共24分)13、20【解析】
先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.【详解】解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣0.1x+1.当x=150时,y=﹣0.1×150+1=20(升).故答案为20【点睛】本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.14、10【解析】
连接AD,根据等腰三角形的性质可得而AD⊥BC,根据三角形的面积求出AD的长,由EF是AC的垂直平分线可得当AD,EF交点M时,周长的最小值为AD+CD的长,故可求解.【详解】连接AD,∵,点为边的中点,∴AD⊥BC,∵,的面积是,∴AD=16×2÷4=8,∵EF是AC的垂直平分线,∴点C关于直线EF的对称点为A,∴AD的长为CM+MD的最小值,∴周长的最小值为AD+CD=8+BC=8+2=10.故填:10.【点睛】此题主要考查对称轴的应用,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.15、1【解析】
根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.【详解】连接OB.∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16、1.【解析】
利用总数×出现次品的概率=次品的数量,进而得出答案.【详解】解:由题意可得:次品数量大约为400×0.05=1.故答案为1.【点睛】本题考查概率的意义,正确把握概率的定义是解题的关键.17、30【解析】
解:先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=3018、1【解析】
解:设A(x,),B(a,0),过A作AD⊥OB于D,EF⊥OB于F,如图,由平行四边形的性质可知AE=EB,∴EF为△ABD的中位线,由三角形的中位线定理得:EF=AD=,DF=(a-x),OF=,∴E(,),∵E在双曲线上,∴=k,∴a=3x,∵平行四边形的面积是24,∴a•=3x•=3k=24,解得:k=1.故答案为:1.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析.【解析】
(1)根据圆内接四边形的性质可得,根据邻补角互补可得,进而得到,然后利用等边对等角可得,进而可得;(2)首先证明是等边三角形,进而可得,再根据,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.【详解】解:(1)∵四边形ABCD是⊙O的内接四边形,∴,∵,∴,∵DC=DE,∴,∴;(2)∵,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴,∴△ABE是等边三角形.【点睛】本题考查圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.20、(1);(2);(3)点的坐标为或.【解析】
(1)待定系数法求一次函数解析式和反比例函数解析式,将已知点坐标代入并解方程(组)即可;
(2)先求出直线l1与坐标轴的交点坐标,可得:△COE是等腰直角三角形,再由翻折可得:OCHE是正方形.即可求出H的坐标;
(3)①先待定系数法求直线AO解析式为y=3x,再由△AEG的面积与△OFG的面积相等可得:EF∥AO,即可求直线l2的解析式;
②存在,由S△PBC=S△OBC可知:点P在经过点O或H平行于直线l1:y=-x+4的直线上,易求得点P的坐标为P(-1,1)或P(1,7).【详解】解:(1)将、点代入得,解得:直线的解析式为:;将代入中,得,双曲线的解析式为:.(2)如图1中,在中,令,得:是等腰直角三角形,由翻折得:,是正方形..(3)如图2,连接,①、.设直线解析式为,,直线解析式为,直线的解析式为:;②存在,点坐标为:或.解方程组得:,;;,点在经过点或平行于直线的直线上,易得:或分别解方程组或得:或点的坐标为或.【点睛】本题是反比例函数综合题,主要考查了待定系数法求一次函数和反比例函数解析式、翻折的性质、正方形的性质、三角形面积等;解题时要能够将这些知识点联系起来,灵活运用.21、(1)y=x-1;(2)画图见解析,点D的坐标为(,).【解析】
(1)设直线AB解析式为:y=kx+b,把A,B坐标代入,求解即可;(2)按照题目要求画图即可,根据题意可得点D在线段BC垂直平分线上,据此可求出D点坐标.【详解】(1)设直线AB解析式为:y=kx+b,代入点A(-3,0),B(0,-1),得:,解得,∴直线AB解析式为:y=x-1;(2)如图所示:∵B(0,-1),C(0,),DB=DC,∴点D在线段BC垂直平分线上,∴D的纵坐标为,又∵点D在直线AB上,令y=,得x=,∴点D的坐标为(,).【点睛】本题考查了用待定系数法求一次函数解析式,尺规作图,垂直平分线的性质,掌握知识点是解题关键.22、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.【解析】
①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.【详解】①由图象可得,菜地离小明家1.1千米,小明走到菜地用了15分钟;②25-15=10(分钟),即小明给菜地浇水用了10分钟;③2-1.1=0.9(千米)玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1);(2)或.【解析】
(1)如图作DH⊥OA于H.由DH∥OB,可得,由此求出点D坐标,即可解决问题;(2)如图2中,观察图象可知满足条件的点Q在点P的下方.分两种情形①当△QOP∽△POB时,②当△OPQ′∽△POB时,分别求出点Q、Q′的坐标即可解决问题;【详解】解:(1)如图作于.∵直线与轴、轴分别交于,两点,∴,,∴,,∵,∴,∴,,∴,∴,∵点在上,∴.(2)如图2中,观察图象可知满足条件的点在点的下方.①当时,,∴,∴,∴,∵点在上,∴.②当时,同法可得,∵点在上,∴.【点睛】本题考查反比例函数综合题、平行线分线段成比例定理、相似三角形的判定和性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB15-T 1152-2025 黄瓜集约化育苗技术规程
- 还款标准合同
- 基本功大赛现场做课件
- 初三化学健康化学试卷及答案
- 中国钢铁行业并购重组的路径探索与绩效提升-以WG集团公司为例
- WTO框架下中国农产品贸易:现状、挑战与突破路径
- 初二语文文言文阅读专项试卷及答案
- 基层消防知识培训课件活动
- 汽车工程学:汽车纵向动力学 中英文翻译、外文文献翻译、外文翻译
- 培训课件温馨提醒语录简短
- 2025年医学三基考试(医师)三基考试真题(含答案)
- 2025年卫生系统招聘考试-卫生系统招聘考试(预防医学专业知识)历年参考题库含答案解析(5卷套题【单项选择题100题】)
- 2025年全科医生考试试题及答案
- 2025年全国职业病防治知识竞赛试题含答案
- DB5308-T 74-2023 景迈山古茶林保护管理技术规范
- 银行保安制度管理办法
- 中国阅兵仪式课件
- 浙江省2025年中考真题数学试卷及答案
- 渝23TG02 钢管桁架预应力混凝土叠合板图集 DJBT50-165
- 物流园区保安管理制度
- 2025年思想政治理论考试试卷及答案介绍
评论
0/150
提交评论