基本初等函数基本初等函数总结表格_第1页
基本初等函数基本初等函数总结表格_第2页
基本初等函数基本初等函数总结表格_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——基本初等函数基本初等函数总结表格函数

课本是教师上课之本,学生学习之本,更是高考的命题之本。在高三复习课中,回归课本是正道.对课本的例题、习题举行深入挖掘、变式探究、改造拓展,可以提高复习的针对性和有效性。

已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x�2+2x,若f(2-a)>�f(a)�,求实数a的取值范围.

解析设x0,有f(-x)=(�-x�)�2+2(-x)=x�2-2x,又f(x)是奇函数,那么f(-x)=-f(x),那么f(x)=-x�2+2x,故�f(x)=�x�2+2x,x≥0

-x�2+2x,xf(a),那么2-a>a,故�af(2a),求a的取值范围.

点评此题是由课本两题综合而得,由函数的图象得到函数的单调性,再借助函数单调性处理不等式问题。课本上两道习题题意相对明确,难度不大,而将两题有机结合,利用奇函数性质先求解析式,再利用图象得到函数单调性,既增加了试题容量,又适当加大了试题的难度。

已知a=12��23�,b=15��23�,�c=12��13��,d=�log���13�15,那么a,b,c,d的大小关系为��.

解析设函数f(x)=x��23�,那么f(x)=x��23�在(0,+∞)上单调递增,那么f12>f15,即�a>�b.

设函数g(x)=12�x,那么g(x)=12�x在R上单调递减,那么g23�h13=1,即d>1,综上,b课本寻根必修1�P�94�14:设a=0.3�2,b=2��0.3�,c=�log���2�2,试对比a,b,c的大小关系.

点评对比大小常借助幂、指、对数函数的单调性,课此题对比三个数的大小,突出借助中介“0”与“1”,此题在此根基上,将三个数变成四个数,展现底数同与指数同,利用初等函数的单调性及中介“1”举行求解。

已知函数f(x)=�log��a1-kxx-1是奇函数.

(1)求k的值;(2)判断函数的单调性,并给出证明.

解析(1)对定义域内任一x,有f(-x)=-f(x),即�log��a1+kx-x-1=-�log��a1-kxx-1,

那么�log��a1+kx-x-1+�log��a1-kxx-1=0,

即�log��a1-k�2x�21-x�2=0,那么1-k�2x�21-x�2=1,

得k�2=1,k=1或k=-1.

又当k=1时,f(x)无意义,故k=-1.

(2)由(1)知k=-1,此时f(x)=�log��a1+xx-1,函数的定义域为(-∞,-1)∪(1,+∞).

①当a>1时,设x�10,即x�1+1x�1-1>x�2+1x�2-1.又a>1时,对数函数y=�log��ax是增函数,故��log��ax�1+1x�1-1>��log��ax�2+1x�2-1,即f(x�1)>f(x�2),故�f(x)在�(-∞,-1)单调递减;同理,f(x)在(�1,+∞�)单调递减.

②当00,即x�1+1x�1-1>x�2+1x�2-1.又0综上,当a>1时,函数在(-∞,-1)上单调递减,在(1,+∞)上单调递减;当0课本寻根必修1�P�70�5:求证:函数f(x)=�lg�1-x1+x(-1�2��15�=c,又d=�log��2150,即a�x>1.①当a>1时,�x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论