2023届河北省石家庄市井陉矿区贾庄镇区贾庄中学数学八年级第二学期期末调研模拟试题含解析_第1页
2023届河北省石家庄市井陉矿区贾庄镇区贾庄中学数学八年级第二学期期末调研模拟试题含解析_第2页
2023届河北省石家庄市井陉矿区贾庄镇区贾庄中学数学八年级第二学期期末调研模拟试题含解析_第3页
2023届河北省石家庄市井陉矿区贾庄镇区贾庄中学数学八年级第二学期期末调研模拟试题含解析_第4页
2023届河北省石家庄市井陉矿区贾庄镇区贾庄中学数学八年级第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,△ABC顶点C的坐标是(1,-3),过点C作AB边上的高线CD,则垂足D点坐标为()A.(1,0) B.(0,1)C.(-3,0) D.(0,-3)2.如图,直线y=x+b与直线y=kx+b交于点P(3,5),则关于x的不等式x+b>kx+6的解集是()A.x>3 B.x<3 C.x≥3 D.x≤33.一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是()A.1 B.2 C.3 D.44.若点P(﹣3+a,a)在正比例函数y=﹣x的图象上,则a的值是()A. B.﹣ C.1 D.﹣15.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠AOD=120°,BD=6.则A.32 B.3 C.236.如图,在中,,,下列选项正确的是()A. B. C. D.7.已知点,,三点都在反比例函数的图像上,则下列关系正确的是().A. B. C. D.8.一天李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是()A.李师傅上班处距他家200米B.李师傅路上耗时20分钟C.修车后李师傅骑车速度是修车前的2倍D.李师傅修车用了5分钟9.一次函数y=2x﹣1的图象大致是()A. B. C. D.10.下面四个图形中,不是轴对称图形的是(

)A.

B.

C.

D.11.在平行四边形ABCD中,已知,,则它的周长为()A.8 B.10 C.14 D.1612.如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(2,0),(0.5,1),则点B的坐标是()A.(1,2) B.(0.5,2) C.(2.5,1) D.(2,0.5)二、填空题(每题4分,共24分)13.已知,则代数式________.14.如图,在矩形ABCD中,AB=8,BC=10,E是AB上的一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则AE的长为_________.15.如图,函数y=k1x

(x>0)的图象与矩形OABC的边BC交于点D,分别过点A,D作AF∥DE,交直线y=k2x(k2<0)于点F,E.若OE=OF,BD=2CD,四边形ADEF的面积为12,则k1的值为16.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为16,则▱ABCD的两条对角线的和是______17.已知长方形的面积为6m2+60m+150(m>0),长与宽的比为3:2,则这个长方形的周长为_____.18.△ABC中,已知:∠C=90°,AB=17,BC=8,则AC=_____.三、解答题(共78分)19.(8分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?20.(8分)如图,△ABC的三个顶点在正方形网格的格点上,网格中的每个小正方形的边长均为单位1.(1)求证:△ABC为直角三角形;(2)求点B到AC的距离.21.(8分)计算:解方程:.22.(10分)如图,直线:与轴、轴分别交于、两点,在轴上有一点,动点从点开始以每秒1个单位的速度匀速沿轴向左移动.(1)点的坐标:________;点的坐标:________;(2)求的面积与的移动时间之间的函数解析式;(3)在轴右边,当为何值时,,求出此时点的坐标;(4)在(3)的条件下,若点是线段上一点,连接,沿折叠,点恰好落在轴上的点处,求点的坐标.23.(10分)某公司把一批货物运往外地,有两种运输方案可供选择.方案一:使用快递公司的邮车运输,装卸收费400元,另外每千米再回收4元;方案二:使用快递公司的火车运输,装卸收费820元,另外每千米再回收2元.(1)分别求邮车、火车运输总费用y1(元)、y2(元)关于运输路程x(km)之间的函数关系式:(2)如何选择运输方案,运输总费用比较节省?24.(10分)甲、乙两个工程队合作完成一项工程,两队合做2天后由乙队单独做1天就完成了全部工程,已知乙队单独做所需的天数是甲队单独做所需天数的1.5倍,求甲、乙两队单独做各需多少天完成该项工程?25.(12分)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)画一个底边为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形;(3)画一个面积为12的平行四边形。26.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据在同一平面内,垂直于同一直线的两直线平行可得CD∥y轴,再根据平行于y轴上的点的横坐标相同解答.【详解】如图,∵CD⊥x轴,∴CD∥y轴,∵点C的坐标是(1,-3),∴点D的横坐标为1,∵点D在x轴上,∴点D的纵坐标为0,∴点D的坐标为(1,0).故选:A.【点睛】本题考查了坐标与图形性质,比较简单,作出图形更形象直观.2、A【解析】

利用函数图象,写出直线y=x+b在直线y=kx+1上方所对应的自变量的范围即可.【详解】根据图象得当x>3时,x+b>kx+1.故选:A.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3、D【解析】试题分析:根据一次函数的性质,当y随x的增大而增大时,求得k的范围,在选项中找到范围内的值即可.解:根据一次函数的性质,对于y=(k﹣3)x+2,当(k﹣3)>0时,即k>3时,y随x的增大而增大,分析选项可得D选项正确.答案为D.4、C【解析】

把点P坐标代入正比例函数解析式得到关于a的方程,解方程即可得.【详解】解:由题意得:a=﹣(-3+a),解得:a=1,故选C.【点睛】本题考查了正比例函数图象上点的坐标特征,熟知正比例函数图象上点的坐标一定满足正比例函数的解析式是解题的关键.5、B【解析】

根据矩形的对角线的性质可得△AOB为等边三角形,由等边三角形的性质即可求出AB的值.【详解】∵ABCD是矩形,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB为等边三角形,∵BD=6,∴AB=OB=3,故选:B.【点睛】本题考查了矩形的性质、等边三角形的判定与性质,熟练掌握矩形的性质,证明三角形是等边三角形是解题的关键.6、A【解析】

通过证明△ADE∽△ABC,由相似三角形的性质可求解.【详解】解:∵DE∥BC,∴△ADE∽△ABC∴故选:A.【点睛】本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.7、B【解析】解:∵,∴,,即.故选B.8、A【解析】

观察图象,明确每一段小明行驶的路程,时间,作出判断.【详解】A.李师傅上班处距他家2000米,此选项错误;B.李师傅路上耗时20分钟,此选项正确;C.修车后李师傅骑车速度是2000-100020-15=200米/分钟,修车前速度为100010=100米/分钟,∴修车后李师傅骑车速度是修车前的2倍,D.李师傅修车用了5分钟,此选项正确.故选A.【点睛】本题考查了学生从图象中读取信息的能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.9、B【解析】

根据一次函数的性质,判断出k和b的符号即可解答.【详解】由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选B.【点睛】本题考查了一次函数y=kx+b图象所过象限与k,b的关系,当k>0,b<0时,函数图象经过一、三、四象限.10、C【解析】

轴对称图形即沿一条线折叠,被折叠成的两部分能够完全重合,根据轴对称图形的特点分别分析判断即可.【详解】ABD、都是关于一条竖直轴对称,是轴对称图形,不符合题意;C、两半颜色不一样,大小也不是关于一条轴对称,不是轴对称图形,符合题意;故答案为:C.【点睛】此题主要考查轴对称图形的识别,解题的关键是熟知轴对称图形的定义.11、D【解析】

根据“平行四边形的对边相等”结合已知条件进行分析解答即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=5,AD=BC=3,∴平行四边形ABCD的周长=AB+BC+CD+AD=5+3+5+3=16故选D.【点睛】本题考查“平行四边形的对边相等”是解答本题的关键.12、C【解析】

延长BC交y轴于点D,由点A的坐标得出OA=2,由平行四边形的性质得出BC=OA=2,由点C的坐标得出OD=1,CD=0.5,求出BD=BC+CD=2.5,即可得出点B的坐标.【详解】延长BC交y轴于点D,如图所示:∵点A的坐标为(2,0),∴OA=2,∵四边形OABC是平行四边形,∴BC=OA=2,∵点C的坐标是(0.5,1),∴OD=1,CD=0.5,∴BD=BC+CD=2.5,∴点B的坐标是(2.5,1);故选:C.【点睛】此题考查坐标与图形性质,平行四边形的性质,解题关键在于作辅助线.二、填空题(每题4分,共24分)13、1【解析】

根据二次根式有意义的条件得到a≥1,根据绝对值的性质把原式化简计算即可.【详解】由题意得,a-1≥0,解得,a≥1,则已知等式可化为:a-2018+=a,整理得,=2018,解得,a-1=20182,∴a-20182=1,故答案是:1.【点睛】考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.14、1【解析】

首先求出DF的长度,进而求出AF的长度;根据勾股定理列出关于线段AE的方程即可解决问题.【详解】设AE=x,由题意得:FC=BC=10,BE=EF=8-x;∵四边形ABCD为矩形,∴∠D=90°,DC=AB=8,由勾股定理得:DF2=102-82=16,∴DF=6,AF=10-6=4;由勾股定理得:EF2=AE2+AF2,即(8-x)2=x2+42解得:x=1,即AE=1.故答案为:1.【点睛】该命题以正方形为载体,以翻折变换为方法,以考查勾股定理、全等三角形的性质为核心构造而成;解题的关键是灵活运用有关定理来分析、判断或解答.15、2【解析】

如图,连接OD,过O作OM∥ED交AD于M,可以得出S△AOD=12S四边形ADEF,进而得到S矩形OACB的值.作DH⊥OA于H,可得S矩形OCDH【详解】解:如图,连接OD,过O作OM∥ED交AD于M.S△AOD=S△AOM+S△DOM=12OM×h1+12OM×h2==12OM(h1+h2),S四边形ADEF=12(AF+又∵OM=12(AF+ED),h1+h2=h,故S△AOD=12S四边形ADEF=12∵△AOD和矩形OACB同底等高,故S矩形OACB=12,作DH⊥OA于H.∵BD=2CD,BC=3CD,故S矩形OCDH=13×12=2,即CD×DH=xy=k1=2故答案为:2.【点睛】本题考查了反比例函数与几何综合.求出S△AOD的值是解答本题的关键.16、1【解析】

根据平行四边形对角线互相平分,对边相等可得CD=AB=5,AC=2CO,BD=2DO,再由△OCD的周长为16可得CO+DO=16﹣5=11,然后可得答案.【详解】解:∵四边形ABCD是平行四边形,∴CD=AB=5,AC=2CO,BD=2DO,∵△OCD的周长为16,∴CO+DO=16﹣5=11,∴AC+BD=2×11=1,故答案为1.【点睛】此题主要考查了平行四边形的性质,关键是掌握平行四边形对角线互相平分,对边相等.17、10m+1【解析】

对面积表达式进行变形,根据面积=长×宽,再根据长与宽的比是3:2,判断出长宽的表达式,继而得出周长.【详解】解:∵6m2+60m+11=6(m2+10m+25)=6(m+5)2=[3(m+5)][2(m+5)],且长:宽=3:2,∴长为3(m+5),宽为2(m+5),∴周长为:2[3(m+5)+2(m+5)]=10m+1.故答案为:10m+1【点睛】本题考查了用提取公因式和完全平方公式进行因式分解的实际应用,熟练掌握并准确分析是解题的关键.18、15【解析】

根据勾股定理即可算出结果.【详解】在△ABC中,∠C=90°,AB=17,BC=8,所以AC=故答案为:15【点睛】本题考查了勾股定理,掌握勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方,是解题的关键.三、解答题(共78分)19、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.【解析】

(1)①令求出x的值即可得到A的坐标,令求出y的值即可得到B的坐标;②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;(2)先利用对称的性质得出,然后利用平行线的性质和角度之间的关系得出,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要,利用,然后表示出EF,建立一个关于t的方程进而求解即可;(3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知,即可判断四边形ABCD的形状,由,可知,建立关于四边形ABCD面积的方程解出t的值即可.【详解】(1)①令,则,解得,∴;令,则,∴;②当t=2时,,图形如下:(2)如图,∵四边形DCEF与四边形ABEF关于直线EF对称,,.,.,,,,即轴,,∴四边形DHEF为平行四边形.要使四边形DHEF为菱形,只需,,,.又,,,解得,∴当时,四边形DHEF为菱形;(3)连接AD,BC,∵AB和CD关于EF对称,∴,∴四边形ABCD为平行四边形.由(2)知,.,,∴四边形ABCD为矩形.∵,.,,∴四边形ABCD的面积为,解得,∴当时,四边形ABCD的面积为1.【点睛】本题主要考查一次函数与四边形综合,掌握平行四边形的判定及性质,矩形的判定,勾股定理,菱形的性质并利用方程的思想是解题的关键.20、(1)见解析;(2).【解析】

(1)根据勾股定理以及逆定理解答即可;

(2)根据三角形的面积公式解答即可.【详解】解:(1)由勾股定理得,AB2+BC2=65=AC2△ABC为直角三角形;(2)作高BD,由得,解得,BD=点B到AC的距离为.【点睛】考查勾股定理问题,关键是根据勾股定理以及逆定理解答.21、(1);(2),.【解析】

直接利用零指数幂的性质以及二次根式的性质分别化简得出答案;直接利用十字相乘法分解因式进而解方程得出答案.【详解】解:原式;,解得:,.【点睛】此题主要考查了因式分解法解方程以及实数运算,正确掌握解题方法是解题关键.22、(1),;(2);(3);(4)【解析】

(1)在中,分别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;.(4)由勾股定理可得:,折叠可知;,可得:,故,,设,则,在中,根据勾股定理可列得方程,即可求出答案.【详解】解:(1)在中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2)故答案为:(4,0);(0,2)(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA-AM=4-t,∵N(0,4)∴ON=4,∴,即;当点在轴左边时,则OM=AM-OA=t-4,∴,即.∴(3)若,则有,∴.(4)由(3)得,,,∴.∵沿折叠后与重合,∴,∴,∴此时点在轴的负半轴上,,,设,则,在中,,解得,∴.【点睛】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、折叠及分类讨论思想等知识.本题考查知识点较多,综合性很强.23、(1)y1=4x+400,y2=2x+820;(2)当运输路程x不超过210千米时,使用方式一最节省费用;当运输路程x超过210千米时,使用方式二最节省费用;当运输路程x等于210千米时,使用两种方式的费用相同.【解析】

(1)根据运输总费用=装卸费用+加收的费用列式整理即可;(2)分y1=y2、y1>y2、y1<y2三种情况讨论求解.【详解】(1)y1=4x+400,y2=2x+820;(2)①当y1>y2时,4x+400>2x+820,x>210,②当y1<y2时,4x+400<2x+820,x<210,③当y1=y2时,4x+400=2x+820,x=210,答:当运输路程x不超过210千米时,使用方式一最节省费用;当运输路程x超过210千米时,使用方式二最节省费用;当运输路程x等于210千米时,使用两种方式的费用相同.【点睛】考查了一次函数的应用,理解两种运输方式的收费组成是解题的关键,(2)要注意分情况讨论.24、甲队单独歐需4天完成该项工程,乙队单独做需6天完成该项工程【解析】

设甲队单独做需x天完成该项工程,则乙队单独做需1.5x天完成该项工程,根据乙一天的工作量+甲乙合作2天的工作量=1列出方程解答即可.【详解】解:设甲队单独做需天完成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论