2023届广西南宁市广西大学附属中学八年级数学第二学期期末考试模拟试题含解析_第1页
2023届广西南宁市广西大学附属中学八年级数学第二学期期末考试模拟试题含解析_第2页
2023届广西南宁市广西大学附属中学八年级数学第二学期期末考试模拟试题含解析_第3页
2023届广西南宁市广西大学附属中学八年级数学第二学期期末考试模拟试题含解析_第4页
2023届广西南宁市广西大学附属中学八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.函数中,自变量的取值范围是()A. B. C. D.2.设直角三角形的两条直角边分别为a和b,斜边长为c,已知,,则()A.3 B.4 C.5 D.83.用配方法解一元二次方程,配方后得到的方程是()A. B. C. D.4.下列说法正确的是()A.平行四边形的对角线相等B.一组对边平行,一组对边相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.有两对邻角互补的四边形是平行四边形5.如果把分式中的和都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍C.缩小6倍 D.不变6.如图,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A.9cm B.8cm C.7cm D.6cm7.如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为()A.5 B.6 C.8 D.128.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对9.如图,已知四边形ABCD为菱形,AD=5cm,BD=6cm,则此菱形的面积为()A.12cm2 B.24cm2 C.48cm2 D.96cm210.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为()A.10 B. C.15 D.11.若把分式中的和都扩大为原来的5倍,那么分式的值()A.扩大为原来的5倍 B.扩大为原来的10倍 C.不变 D.缩小为原来的倍12.如图,下列条件中,不能判定△ACD∽△ABC的是()A.∠ADC=∠ACB B.∠B=∠ACD C.∠ACD=∠BCD D.AC二、填空题(每题4分,共24分)13.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.14.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.15.如图,△ABC中,AB=BC=12cm,D、E、F分别是BC、AC、AB边上的中点,则四边形BDEF的周长是__________cm.16.如图,在平面直角坐标系中,点A1,A2,A3…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果点A1(1,1),那么点A2019的纵坐标是_____.17.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.18.如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,若图1正方形中MN=1,则CD=____.三、解答题(共78分)19.(8分)如图,在中,点为边的中点,点在内,平分点在上,.(1)求证:四边形是平行四边形;(2)线段之间具有怎样的数量关系?证明你所得到的结论.20.(8分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7如果你是教练你会选拔谁参加比赛?为什么?21.(8分)为了维护国家主权和海洋权力,海监部门对我国领海实行常态化巡航管理,如图,正在执行巡航任务的海监船以每小时30海里的速度向正东方航行,在处测得灯塔在北偏东60°方向上,继续航行后到达处,此时测得灯塔在北偏东30°方向上.(1)求的度数;(2)已知在灯塔的周围15海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(10分)如图,正方形ABCD中,点E在BC边上,AF平分∠DAE,DF//AE,AF与CD相交于点G.(1)如图1,当∠AEC=,AE=4时,求FG的长;(2)如图2,在AB边上截取点H,使得DH=AE,DH与AF、AE分别交于点M、N,求证:AE=AH+DG23.(10分)某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.下表是购买量x(千克)、付款金额y(元)部分对应的值,请你结合表格:购买量x(千克)1.522.53付款金额y(元)7.51012b(1)写出a、b的值,a=b=;(2)求出当x>2时,y关于x的函数关系式;(3)甲农户将18.8元钱全部用于购买该玉米种子,计算他的购买量.24.(10分)“2018年某明星演唱会”于6月3日在某市奥体中心举办.小明去离家300的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有30分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小明骑车的时间比跑步的时间少用了5分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小明跑步的平均速度;(2)如果小明在家取票和寻找“共享单车”共用了4分钟,他能否在演唱会开始前赶到奥体中心?说明理由.25.(12分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)26.如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。(1)若DE=DC,求证:四边形CDEF是菱形;(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据二次根式的性质的意义,被开方数大于或等于0,可以求出x的范围.【详解】解:由有意义得,解得:故选A【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2、B【解析】

根据勾股定理,直接计算即可得解.【详解】根据勾股定理,得故答案为B.【点睛】此题主要考查勾股定理的运用,熟练掌握,即可解题.3、B【解析】

先把常数移到等号右边,然后根据配方法,计算即可.【详解】解:,,,,故选:B.【点睛】本题主要考查一元二次方程的配方法,注意等式两边同时加上一次项系数一半的平方是解题的关键.4、C【解析】

由平行四边形的判定和性质,依次判断可求解.【详解】解:A、平行四边形的对角线互相平分,但不一定相等,故A选项不合题意;B、一组对边平行,一组对边相等的四边形可能是等腰梯形,故B选项不合题意;C、对角线互相平分的四边形是平行四边形,故C选项符合题意;D、有两对邻角互补的四边形可能是等腰梯形,故D选项不合题意;故选:C.【点睛】本题考查了平行四边形的判定和性质,熟练掌握相关性质定理是解题的关键.5、D【解析】

将x,y用3x,3y代入化简,与原式比较即可.【详解】解:将x,y用3x,3y代入得=,故值不变,答案选D.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.6、B【解析】

根据含30度角的直角三角形的性质即可求出答案.【详解】直角三角形中,30°所对的边的长度是斜边的一半,所以AB=2BC=8cm.故选B.【点睛】本题考查含30度角的直角三角形,解题的关键是熟练运用30度角的直角三角形的性质,本题属于基础题型.7、B【解析】

由平行四边形的性质得出BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.【详解】解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,∴BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,∵∴△OBC是直角三角形,∴.故选:B.【点睛】本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.8、B【解析】

由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;

②当4为腰时,符合题意,则周长是2+4+4=1.

故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.9、B【解析】

设AC交BD于O.根据勾股定理求出OA,再根据菱形的面积公式计算即可.【详解】设AC交BD于O.∵四边形ABCD是菱形,∴AC⊥BD,∵AD=5cm,OD=OB=12BD=3cm∴OA=52-∴AC=2OA=8,∴S菱形ABCD=12×AC×BD=24故选B.【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、C【解析】分析:根据平行四边形的面积,可得设则在Rt中,用勾股定理即可解得.详解:∵四边形ABCD是平行四边形,∴∴设则在Rt中,即解得(舍去),故选C.点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.11、A【解析】

把和都扩大为原来的5倍,代入原式化简,再与原式比较即可.【详解】和都扩大为原来的5倍,得,∴把分式中的和都扩大为原来的5倍,那么分式的值扩大为原来的5倍.故选A.【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.12、C【解析】

根据相似三角形的判定即可求出答案.【详解】(A)∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC,故A能判定△ACD∽△ABC;(B)∵∠A=∠A,∠B=∠ACD,∴△ACD∽△ABC,故B能判定△ACD∽△ABC;(D)∵ACAB=ADAC,∠A=∠∴△ACD∽△ABC,故D能判定△ACD∽△ABC;故选:C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的判定,本题属于基础题型.二、填空题(每题4分,共24分)13、1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.14、()n-1【解析】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的()2-1=;第三个矩形的面积是()3-1=;…故第n个矩形的面积为:.考点:1.矩形的性质;2.菱形的性质.15、24【解析】

根据中点的性质求出BF、BD,根据中位线的性质求出DE、FE,从而求出四边形BDEF的周长.【详解】∵D、E、F分别是BC、AC、AB边上的中点,∴,,,∵AB=BC=12cm∴BF=DE=BD=BF=6cm∴四边形BDEF的周长为24cm.【点睛】本题考查线段的中点、三角形中位线定理.解决本题的关键是利用三角形的中位线平行于第三边并且等于第三边的一半求出DE和FE.16、【解析】

设点A2,A3,A4…,A1坐标,结合函数解析式,寻找纵坐标规律,进而解题.【详解】∵A1(1,1)在直线y=x+b,∴b=,∴y=x+,

设A2(x2,y2),A3(x3,y3),A4(x4,y4),…,A1(x1,y1)

则有y2=x2+,

y3=x3+,…

y1=x1+.

又∵△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.∴x2=2y1+y2,

x3=2y1+2y2+y3,…

x1=2y1+2y2+2y3+…+2y2+y1.

将点坐标依次代入直线解析式得到:

y2=y1+1

y3=y1+y2+1=

y2

y4=

y3

…y1=y2

又∵y1=1∴y2=

y3=()2

y4=()3

y1=()2故答案为()2.【点睛】此题主要考查了一次函数点坐标特点;等腰直角三角形斜边上高等于斜边长一半;找规律.17、1【解析】

画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周长为1cm.

故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.18、【解析】

根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.【详解】解:如图:∵四边形MNQK是正方形,且MN=1,∴∠MNK=45°,在Rt△MNO中,OM=ON=,∵NL=PL=OL=,∴PN=,∴PQ=,∵△PQH是等腰直角三角形,∴PH=FF'==BE,过G作GG'⊥EF',∴GG'=AE=MN=,∴CD=AB=AE+BE=+=.故答案为:.【点睛】本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.三、解答题(共78分)19、(1)见详解;(2),证明见详解.【解析】

(1)延长CE交AB于点G,证明,可得,结合题目条件利用中位线中的平行即可求证;(2)根据已知条件易得,根据全等可得,从而得到之间的数量关系.【详解】(1)延长CE交AB于点G,如图所示:∵平分∴在中∵点为边的中点∴∴DE为的中位线∴∵∴四边形是平行四边形(2)∵四边形是平行四边形∴∵D、E分别是BC、GC的中点【点睛】本题考查了平行四边形的判定和性质,全等三角形的性质,中位线的性质等知识点,解题的关键在于判断四边形是平行四边形,DE为的中位线,,从而可解此题.20、乙同学的成绩较稳定,应选乙参加比赛【解析】试题分析:比较甲、乙两人的成绩的方差作出判断.试题解析:=(7+8+6+8+6+5+9+10+4+7)=7;

S甲2=[(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(4-7)2+(7-7)2]=3;=(9+5+7+8+6+8+7+6+7+7)=7;

S乙2=[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2+(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2;

∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,

∴乙同学的成绩较稳定,应选乙参加比赛.21、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析【解析】

(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;

(2)作CD⊥AB于D.求出CD的值即可判定;【详解】解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°

∴∠ACB=180°-∠CBA-∠CAB=30°;

(2)由(1)可知∠ACB=∠CAB=30°,

∴AB=CB=30×=20(海里),∠CBD=60°,

过点C作CD⊥AB于点D,在Rt△CBD中,

CD=BCsin60°=10(海里)

10>15

∴海监船继续向正东方向航行是安全的.【点睛】本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22、(1)FG=2;(2)见解析.【解析】

(1)根据正方形的性质,平行线的性质,角平分线的性质可得出∠DAF=∠F=30°,进一步可求得∠GDF=∠F=30°,从而得出FG=DG,利用勾股定理可求出DG=2,故FG=2.(2)根据已知条件可证得AE=DH且AE⊥DH,从而证得∠MAH=∠AMH,∠DMG=∠DGM,从而证得AH=MH,DM=DG,而AE=DH=DM+MH即AE=AH+DG.【详解】(1)当∠AEC=120°,即∠DAE=60°,即∠BAE=∠EAG=∠DAG=30°,在三角形ABE中,AE=4,所以,BE=2,AB=2,所以,AD=AB=2,又DF∥AE,所以,∠F=∠EAG=30°,所以,∠F=∠DAG=30°,又所以,∠AGD=60°,所以,∠CDG=30°,所以FG=DG在△ADG中,AD=2,所以,DG=2,FG=2(2)证明:∵四边形ABCD为正方形,∴∠DAH=∠ABE=90°,AD=AB,在Rt△ADH和Rt△BAE中∴Rt△ADH≌Rt△BAE,∴∠ADH=∠BAE,∵∠BAE+∠DAE=90°,∴∠ADH+∠DAE=90°,∴∠AND=90°.∵AF平分∠DAE,∴∠DAG=∠EAG,∵∠ADH=∠BAE,∴∠DAG+∠ADH=∠EAG+∠BAE.即∠MAH=∠AMH.∴AH=MH.∵AE∥DF,∴∠MDF=∠AND=90°,∠DAF=∠F∴∠GDF=∠ADM,∴∠ADM+∠DAF=∠GDF+∠F,即∠DMG=∠DGM.∴DM=DG.∵DH=DM+HM,∴AE=AH+DG.【点睛】本题考查正方形的性质、全等三角形的判定和性质、角平分线的性质、平行线的性质、三角形的外角的性质等腰三角形的判定,线段的各差关系。正确理解和运用相关知识是解题关键.23、(1)5,1;(2)y=4x+2;(3)甲农户的购买量为4.2千克.【解析】

(1)由表格即可得出购买量为函数的自变量x,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;(2)设当x>2时,y关于x的函数解析式为y=kx+b,根据点的坐标利用待定系数法即可求出函数解析式;(3)由18.8>10,利用“购买量=钱数÷单价”即可得出甲农户的购买了,再将y=18.8代入(2)的解析式中即可求出农户的购买量.【详解】解:(1)由表格即可得出购买量是函数的自变量x,∵10÷2=5,∴a=5,b=2×5+5×0.8=1.故答案为:5,1;(2)设当x>2时,y关于x的函数解析式为y=kx+b,将点(2.5,12)、(3,1)代入y=kx+b中,得:,解得:,∴当x>2时,y关于x的函数解析式为y=4x+2.(3)∵18.8>10,4x+2=18.8x=4.2∴甲农户的购买量为:4.2(千克).答:甲农户的购买量为4.2千克.【点睛】本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.24、(1)小明跑步的平均速度为20米/分钟.(2)小明能在演唱会开始前赶到奥体中心.【解析】

(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小明骑车的时间比跑步的时间少用了5分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小明跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的4分钟即可求出小明赶回奥体中心所需时间,将其与30进行比较后即可得出结论.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论