2022数学优化设计人教版八上答案_第1页
2022数学优化设计人教版八上答案_第2页
2022数学优化设计人教版八上答案_第3页
2022数学优化设计人教版八上答案_第4页
2022数学优化设计人教版八上答案_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.1轴对称一.选择题(共13小题)1.如图,某市的三个城镇中心A、B、C构成△ABC,该市政府打算修建一个大型体育中心P,使得该体育中心到三个城镇中心A、B、C的距离相等,则P点应设计在()A.三个角的角平分线的交点 B.三角形三条高的交点 C.三条边的垂直平分线的交点 D.三角形三条中线的交点2.如图,DE是△ABC中AC边上的垂直平分线,如果BC=5cm,AB=8cm,则△EBC的周长为()A.9cm B.13cm C.18cm D.21cm3.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC、AC于点D和E,∠B=70°,∠C=25°,则∠BAD为()A.55° B.60° C.65° D.70°4.如图,在△ABC中,BC的垂直平分线交AC,BC于点D,E.若△ABC的周长为30,BE=5,则△ABD的周长为()A.10 B.15 C.20 D.255.下列图形:①三角形,②线段,③正方形,④直角、⑤圆,其中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个6.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.13cm C.19cm D.10cm7.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建在()A.A处 B.B处 C.C处 D.D处8.在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°,②AE=EC,③S△ABF:S△AFC=BD:CD,④若BF=2EC,则△FDC周长等于AB的长.正确的是()A.①② B.①③ C.①④ D.①③④9.如图,点P是∠AOB内一点,OP=m,∠AOB=α,点P关于直线OA的对称点为点Q、关于直线OB的对称点为点T,连接QT,分别交OA、OB于点M、N,连接PM、PN,下列结论:①∠OTQ=90°﹣α;②当α=30°时,△PMN的周长为m;③0<QT<2m;④∠MPN=180°﹣2α,其中正确的是()A.①② B.③④ C.①②④ D.①②③④10.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A.34° B.36° C.60° D.72°11.如图,△ABC中,D、E、F三点分别在AB、BC、AC上,且四边形BEFD是以DE为对称轴的轴对称图形,四边形CFDE是以FE为对称轴的轴对称图形.若∠C=40°,则∠DFE的度数为何?() A.65° B.70° C.75° D.80°12.如图所示,光线L照射到平面镜I上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=55°,∠γ=75°,则∠β为()A.50° B.55° C.60° D.65°13.如图,点A在直线l上,△ABC与△AB′C′关于直线l对称,连接BB′分别交AC,AC′于点D,D′,连接CC′,下列结论不一定正确的是()A.∠BAC=∠B′AC′ B.CC′∥BB′ C.BD=B′D′ D.AD=DD′二.填空题(共6小题)14.如图,在△ABC中,BC=8,AB的中垂线交BC于E,AC的中垂线交BC于G,则△AGE的周长等于.15.如图所示,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,则点P2021的坐标是.16.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为(用含n的式子表示). 17.已知:如图,P是∠AOB内的一点,P1,P2分别是点P关于OA、OB的对称点,P1P2交于点OA于点M,交OB于点N,若P1P2=5cm,则△PMN的周长是cm.18.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠AED=130°,∠C=45°,则∠BFC的度数为.19.如图,线段AB、BC的垂直平分线l1、l2相交于点O.若∠B=39°,则∠AOC=°.三.解答题(共9小题)20.如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,求证:BE垂直平分CD.21.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.22.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.23.如图,△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,垂足为D,且BD=DE,连接AE.(1)求证:AB=CE;(2)若△ABC的周长为14cm,AC=6cm,则DC的长为cm.24.如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作BC的平行线AF交CD于F,延长AB、DC交于点E.求证:(1)AC平分∠EAF;(2)∠FAD=∠E.25.如图,△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,连接AE,AG.(1)若△AEG的周长为10,求线段BC的长;(2)若∠BAC=104°,求∠EAG的度数.26.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.27.如图,AD为△ABC的角平分线,AD的中垂线交AB于点E、BC的延长线于点F,AC于EF交于点O.(1)求证:∠3=∠B;(2)连接OD,求证:∠B+∠ODB=180°.28.如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm(1)求△ABC中BC边的长度;(2)若∠B+∠C=64°,求∠DAE的度数.

13.1轴对称一.选择题(共13小题)1.如图,某市的三个城镇中心A、B、C构成△ABC,该市政府打算修建一个大型体育中心P,使得该体育中心到三个城镇中心A、B、C的距离相等,则P点应设计在()A.三个角的角平分线的交点 B.三角形三条高的交点 C.三条边的垂直平分线的交点 D.三角形三条中线的交点【解答】解:∵体育中心到城镇中心A、B的距离相等,∴PA=PB,∴点P在线段AB的垂直平分线上,同理,点P在线段AC的垂直平分线上,∴P点应设计在三条边的垂直平分线的交点,故选:C.2.如图,DE是△ABC中AC边上的垂直平分线,如果BC=5cm,AB=8cm,则△EBC的周长为()A.9cm B.13cm C.18cm D.21cm【解答】解:∵DE是AC边上的垂直平分线,∴AE=CE,∵BC=5cm,AB=8cm,∴△EBC的周长=EB+EC+BC=EB+AE+BC=AB+BC=13(cm),故选:B.3.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC、AC于点D和E,∠B=70°,∠C=25°,则∠BAD为()A.55° B.60° C.65° D.70°【解答】解:在△ABC中,∠B=70°,∠C=25°,则∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣25°=85°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∴∠BAD=85°﹣25°=60°,故选:B.4.如图,在△ABC中,BC的垂直平分线交AC,BC于点D,E.若△ABC的周长为30,BE=5,则△ABD的周长为()A.10 B.15 C.20 D.25【解答】解:∵BC的垂直平分线分别交AC,BC于点D,E,∴DB=DC,BE=EC.∵BE=5,∴BC=2BE=10.∵△ABC的周长为30,∴AB+AC+BC=30.∴AB+AC=20.∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=20,故选:C.5.下列图形:①三角形,②线段,③正方形,④直角、⑤圆,其中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:根据轴对称图形的定义可知:线段,正方形,圆、直角是轴对称图形,三角形不一定是轴对称图形.故选:A.6.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.13cm C.19cm D.10cm【解答】解:∵DE是AC的垂直平分线,AE=3cm,∴AC=2AE=6cm,AD=DC,∵△ABD的周长为13cm,∴AB+BD+AD=13cm,∴AB+BD+DC=AB+BC=13cm,∴△ABC的周长为AB+BC+AC=13cm+6cm=19cm,故选:C.7.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建在()A.A处 B.B处 C.C处 D.D处【解答】解:根据作图可知:EF是线段MN的垂直平分线,所以EF上的点到M、N的距离相等,即发射塔应该建在C处,故选:C.8.在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°,②AE=EC,③S△ABF:S△AFC=BD:CD,④若BF=2EC,则△FDC周长等于AB的长.正确的是()A.①② B.①③ C.①④ D.①③④【解答】解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴③正确;∵∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC,∴FD=CD,∴∠FCD=∠CFD=45°,∴①正确;若AE=EC,BE⊥AC,可得AB=BC,与题意不符合,故②错误.若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴④正确.故选:D.9.如图,点P是∠AOB内一点,OP=m,∠AOB=α,点P关于直线OA的对称点为点Q、关于直线OB的对称点为点T,连接QT,分别交OA、OB于点M、N,连接PM、PN,下列结论:①∠OTQ=90°﹣α;②当α=30°时,△PMN的周长为m;③0<QT<2m;④∠MPN=180°﹣2α,其中正确的是()A.①② B.③④ C.①②④ D.①②③④【解答】解:∵点P关于直线OA的对称点为点Q、关于直线OB的对称点为点T,∴OQ=OO=OT,∠AOP=∠AOQ,∠POB=∠BOT,∵∠AOB=α,∴∠QOT=2α,∴∠OQT=∠OQT=(180°﹣2α)=90°﹣α,故①正确,当α=30°时,∵∠TOQ=60°,OQ=OT,∴△OPQ是等边三角形,∴QT=OQ=m,∵MP=MQ,NP=NT,∴△PMN的周长=PM+MN+PN=QM+MN+NT=QT=m,故②正确,∵OQ=OT=m,∴0<QT≤2m,故③错误,∠MPN=∠OPM+∠OPN=∠OQM+∠OTN=180°﹣2α,故④正确,故选:C.10.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A.34° B.36° C.60° D.72°【解答】解:∵D是线段AB垂直平分线上的点,∴AD=BD,∴△DAB是等腰三角形,∠B=∠DAB,∵∠CAD:∠DAB=1:2,∴设∠DAC=x,则∠B=∠DAB=2x,∴x+2x+2x=90°,∴x=18°,即∠B=36°,故选:B.11.如图,△ABC中,D、E、F三点分别在AB、BC、AC上,且四边形BEFD是以DE为对称轴的轴对称图形,四边形CFDE是以FE为对称轴的轴对称图形.若∠C=40°,则∠DFE的度数为何?()A.65° B.70° C.75° D.80°【解答】解:∵四边形BEFD是以DE为对称轴的轴对称图形,四边形CFDE是以FE为对称轴的轴对称图形,∴∠BED=∠DEF=∠CEF=,∠EDF=∠C=40°,∴∠DFE=180°﹣∠DEF﹣∠EDF=80°,故选:D.12.如图所示,光线L照射到平面镜I上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=55°,∠γ=75°,则∠β为()A.50° B.55° C.60° D.65°【解答】解:∠β所在的顶点处是一个平角为180°,α,γ经过反射后,与β所在的顶点处的一个角组成三角形的内角和180°,即180°﹣2β+α+γ=180°,∴2β=∠α+∠γ。∴∠β=(55+75)÷2=65°.故选:D.13.如图,点A在直线l上,△ABC与△AB′C′关于直线l对称,连接BB′分别交AC,AC′于点D,D′,连接CC′,下列结论不一定正确的是()A.∠BAC=∠B′AC′ B.CC′∥BB′ C.BD=B′D′ D.AD=DD′【解答】解:∵△ABC与△AB′C′关于直线l对称,∴△ABC≌△AB′C′,BB′⊥l,CC′⊥l,AB=AB′,AC=AC′∴∠BAC=∠B′AC′,BB′∥CC′,∴OD=OD′,OB=OB′,∴BD=B′D′,故选项A,B,C正确,故选:D.二.填空题(共6小题)14.如图,在△ABC中,BC=8,AB的中垂线交BC于E,AC的中垂线交BC于G,则△AGE的周长等于8.【解答】解:∵DE是线段AB的垂直平分线,∴EA=EB,同理,GA=GC,∴△AGE的周长=AE+EF+GA=BE+EG+GC=BC=8,故答案为:8.15.如图所示,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,则点P2021的坐标是(1,4).【解答】解:如图,根据反射角与入射角的定义作出图形,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2021÷6=336…5,当点P第2021次碰到矩形的边时为第337个循环组的第5次反弹,点P的坐标为(1,4),故答案为:(1,4).16.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为+36°(用含n的式子表示).【解答】解:如图,设∠BAD′=x,则∠CAE=2x,由翻折变换的性质可知,∠DAE=∠EAD′=2x+n,∵∠DAB=90°,∴4x+2n+x=90°,∴x=(90°﹣2n),∴∠DAE=2×(90°﹣2n)+n=+36°.17.已知:如图,P是∠AOB内的一点,P1,P2分别是点P关于OA、OB的对称点,P1P2交于点OA于点M,交OB于点N,若P1P2=5cm,则△PMN的周长是5cm.【解答】解:∵P1,P2分别是点P关于OA、OB的对称点,∴PM=MP1,PN=NP2;∴P1M+MN+NP2=PM+MN+PN=P1P2=5cm,∴△PMN的周长为5cm.18.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠AED=130°,∠C=45°,则∠BFC的度数为140°.【解答】解:∵一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠AED=130°,∠C=45°,∴∠D=90°,∠MED=65°,∴∠DEF=115°,∴∠CFM=360°﹣115°﹣90°﹣45°=110°∴∠BFC的度数为:2(180°﹣110°)=140°.故答案为:140°.19.如图,线段AB、BC的垂直平分线l1、l2相交于点O.若∠B=39°,则∠AOC=78°.【解答】解:连接BO并延长至D,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴OA=OB,OC=OB,∴∠OAB=∠OBA,∠OCB=∠OBC,∴∠AOD=2∠OBA,∠COD=2∠OBC,∴∠AOC=2(∠OBA+∠OBC)=2∠ABC=78°,三.解答题(共9小题)20.如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,求证:BE垂直平分CD.【解答】证明:∵∠ACB=90°,DE⊥AB,∴∠ACB=∠BDE=90°,在Rt△BDE和Rt△BCE中,,∴Rt△BDE≌Rt△BCE,∴ED=EC,∵ED=EC,BD=BC,∴BE垂直平分CD.21.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【解答】(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,AD平分线段EC,即直线AD是线段CE的垂直平分线.22.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.【解答】证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=ED,∴∠ECD=∠EDC;(2)在Rt△DOE和Rt△COE中,,∴Rt△DOE≌Rt△COE,∴OD=OC,又EC=ED,∴OE是CD的垂直平分线.23.如图,△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,垂足为D,且BD=DE,连接AE.(1)求证:AB=CE;(2)若△ABC的周长为14cm,AC=6cm,则DC的长为4cm.【解答】(1)证明:∵EF垂直平分AC,∴AE=EC,∵AD⊥BC,BD=DE,∴AB=AE,∴AB=EC;(2)解:∵△ABC的周长为14cm,∴AB+BC+AC=14(cm),∵AC=6cm,∴AB+BC=8(cm),∵AB=EC,BD=DE,∴DC=DE+EC=(AB+BC)=4(cm).故答案为:4.24.如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作BC的平行线AF交CD于F,延长AB、DC交于点E.求证:(1)AC平分∠EAF;(2)∠FAD=∠E.【解答】证明:(1)∵BD所在的直线垂直平分线段AC,∴BA=BC,∴∠BAC=∠BCA,∵BC∥AF,∴∠CAF=∠BCA,∴∠CAF=∠BAC,即AC平分∠EAF;(2)∵BD所在的直线垂直平分线段AC,∴DA=DC,∴∠DAC=∠DCA,∵∠DCA是△ACE的一个外角,∴∠DCA=∠E+∠EAC,∴∠E+∠EAC=∠FAD+∠CAF,∵∠CAF=∠EAC,∴∠FAD=∠E.25.如图,△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,连接AE,AG.(1)若△AEG的周长为10,求线段BC的长;(2)若∠BAC=104°,求∠EAG的度数.【解答】解:(1)∵DE垂直平分AB,GF垂直平分AC,∴EA=EB,GA=GC,∵△AEG的周长为10,∴AE+EG+AG=10,∴BC=BE+EG+GC=AE+EG+GC=10;(2)∵∠BAC=104°,∴∠B+∠C=180°﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论