2021年四川省雅安市普通高校高职单招数学测试题(含答案)_第1页
2021年四川省雅安市普通高校高职单招数学测试题(含答案)_第2页
2021年四川省雅安市普通高校高职单招数学测试题(含答案)_第3页
2021年四川省雅安市普通高校高职单招数学测试题(含答案)_第4页
2021年四川省雅安市普通高校高职单招数学测试题(含答案)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年四川省雅安市普通高校高职单招数学测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0

2.设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则Cu(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}

3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7

4.A.B.C.D.

5.已知集合M={1,2,3,4},以={-2,2},下列结论成立的是()A.N包含于MB.M∪N=MC.M∩N=ND.M∩N={2}

6.A.3B.8C.1/2D.4

7.若集合M={3,1,a-1},N={-2,a2},N为M的真子集,则a的值是()A.-1

B.1

C.0

D.

8.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°

9.已知角α的终边经过点(-4,3),则cosα()A.4/5B.3/5C.-3/5D.-4/5

10.己知集合A={x|x>0},B={x|-2<x<1},则A∪B等于()A.{x|0<x<1}B.{x|x>0}C.{x|-2<x<1}D.{x|x>-2}

11.椭圆x2/4+y2/2=1的焦距()A.4

B.2

C.2

D.2

12.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.12

13.已知a=(1,2),b=(x,4)且A×b=10,则|a-b|=()A.-10

B.10

C.

D.

14.已知{<an}为等差数列,a3+a8=22,a6=7,则a5=()</aA.20B.25C.10D.15

15.如下图所示,转盘上有8个面积相等的扇形,转动转盘,则转盘停止转动时,指针落在阴影部分的概率为()A.1/8B.1/4C.3/8D.1/2

16.己知tanα,tanβ是方程2x2+x-6=0的两个根,则tan(α+β)的值为()A.-1/2B.-3C.-1D.-1/8

17.点A(a,5)到直线如4x-3y=3的距离不小于6时,则a的取值为()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)

18.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3

B.-3/4

C.

D.2

19.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)

B.(4,0)(-4,0)

C.(3,0)(-3,0)

D.(7,0)(-7,0)

20.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离

二、填空题(20题)21.

22.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.

23.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.

24.

25.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.

26.

27.在△ABC中,AB=,A=75°,B=45°,则AC=__________.

28.

29.1+3+5+…+(2n-b)=_____.

30.函数f(x)=+㏒2x(x∈[1,2])的值域是________.

31.

32.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.

33.在锐角三角形ABC中,BC=1,B=2A,则=_____.

34.函数的最小正周期T=_____.

35.(x+2)6的展开式中x3的系数为

36.算式的值是_____.

37.

38.

39.以点(1,0)为圆心,4为半径的圆的方程为_____.

40.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=

三、计算题(5题)41.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

42.解不等式4<|1-3x|<7

43.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

44.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

45.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

四、简答题(5题)46.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。

47.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

48.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

49.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率

50.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。

五、解答题(5题)51.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

52.已知数列{an}是等差数列,且a2=3,a4+a5+a6=27(1)求通项公式an(2)若bn=a2n,求数列{bn}的前n项和Tn.

53.解不等式4<|1-3x|<7

54.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点,求证:(1)直线EG//平面BDD1B1;(2)平面EFG//平面BDD1B1

55.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?

六、证明题(2题)56.若x∈(0,1),求证:log3X3<log3X<X3.

57.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

参考答案

1.C三角函数值的符号.由tanα>0,可得α的终边在第一象限或第三象限,此时sinα与cosα同号,故sin2α=2sinαcosα>0

2.A并集,补集的运算∵A∪B={1,3,4,5}...Cu(AUB)={2,6},

3.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,

4.A

5.D集合的包含关系的判断.两个集合只有一个公共元素2,所以M∩N={2}

6.A

7.A

8.B

9.D三角函数的定义.记P(-4,3),则x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5

10.D

11.D椭圆的定义.由a2=b2+c2,c2=4-2=2,所以c=,椭圆焦距长度为2c=2

12.B分层抽样方法.试题分析:根据题意,由分层抽样知识可得:在高二年级的学生中应抽取的人数为:40×6/30=8

13.D向量的线性运算.因为a×b=10,x+8==10,x=2,a-b=(-l,-2),故|a-b|=

14.D由等差数列的性质可得a3+a8=a5+a6,∴a5=22-7=15,

15.D本题考查几何概型概率的计算。阴影部分的面积为圆面的一半,由几何概型可知P=1/2。

16.D

17.C

18.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.

19.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).

20.B圆与圆的位置关系,两圆相交

21.0.4

22.36,

23.45°,由题可知,因此B=45°。

24.2/5

25.12,高三年级应抽人数为300*40/1000=12。

26.56

27.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.

28.2π/3

29.n2,

30.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].

31.

32.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.

33.2

34.

,由题可知,所以周期T=

35.160

36.11,因为,所以值为11。

37.1-π/4

38.√2

39.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16

40.72

41.

42.

43.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

44.

45.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

46.由已知得:由上可解得

47.

48.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

49.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

50.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴

51.

52.

53.

5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论