2021年广东省潮州市普通高校高职单招数学摸底卷(含答案)_第1页
2021年广东省潮州市普通高校高职单招数学摸底卷(含答案)_第2页
2021年广东省潮州市普通高校高职单招数学摸底卷(含答案)_第3页
2021年广东省潮州市普通高校高职单招数学摸底卷(含答案)_第4页
2021年广东省潮州市普通高校高职单招数学摸底卷(含答案)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年广东省潮州市普通高校高职单招数学摸底卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)

2.A.2B.3C.4D.5

3.A.

B.

C.

D.U

4.若102x=25,则10-x等于()A.

B.

C.

D.

5.下列函数中,既是奇函数又是增函数的是A.B.C.D.y=3x

6.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.

B.

C.

D.

7.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6

8.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.

B.

C.

D.

9.如果直线3x+y=1与2mx+4y-5=0互相垂直,则m为()A.1

B.

C.

D.-2

10.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60

11.A.ac<bc

B.ac2<bc2

C.a-c<b-c

D.a2<b2

12.若x2-ax+b<0的解集为(1,2),则a+b=()A.5B.-5C.1D.-1

13.复数z=2i/1+i的共轭复数是()A.1+iB.1-iC.1/2+1/2iD.1/2-1/2i

14.函数y=|x|的图像()

A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x直线对称

15.函数和在同一直角坐标系内的图像可以是()A.

B.

C.

D.

16.△ABC的内角A,B,C的对边分别为a,b,c已知a=,c=2,cosA=2/3,则b=()A.

B.

C.2

D.3

17.函数y=的定义域是()A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]

18.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7

19.下列命题是真命题的是A.B.C.D.

20.已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x的值是()A.-2B.0C.2D.1

二、填空题(20题)21.

22.

23.展开式中,x4的二项式系数是_____.

24.函数的最小正周期T=_____.

25.双曲线x2/4-y2/3=1的虚轴长为______.

26.函数y=3sin(2x+1)的最小正周期为

27.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.

28.在△ABC中,若acosA=bcosB,则△ABC是

三角形。

29.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.

30.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.

31.

32.甲,乙两人向一目标射击一次,若甲击中的概率是0.6,乙的概率是0.9,则两人都击中的概率是_____.

33.

34.若,则_____.

35.右图是一个算法流程图.若输入x的值为1/16,则输出y的值是____.

36.若f(X)=,则f(2)=

37.按如图所示的流程图运算,则输出的S=_____.

38.

39.函数f(x)=-X3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________________.

40.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=_______.

三、计算题(5题)41.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

42.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

43.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

44.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

45.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

四、简答题(5题)46.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值

47.证明上是增函数

48.已知集合求x,y的值

49.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

50.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

五、解答题(5题)51.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

52.

53.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.

54.已知椭圆的中心为原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于异于M的不同两点A,B直线MA,MB与x轴分别交于点E,F.(1)求椭圆的标准方程;(2)求m的取值范围.

55.

六、证明题(2题)56.己知sin(θ+α)=sin(θ+β),求证:

57.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

参考答案

1.A平面向量的线性计算.因为a=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).

2.D向量的运算.因为四边形ABCD是平行四边形,

3.B

4.B

5.D

6.D从中随即取出2个球,每个球被取到的可能性相同,因此所有的取法为,所取出的的2个球至少有1个白球,所有的取法为,由古典概型公式可知P=5/6.

7.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。

8.D

9.C由两条直线垂直可得:,所以答案为C。

10.C

11.C

12.A一元二次不等式与一元二次方程的应用,根与系数的关系的应用问题.即方程x2-ax+b=0的两根为1,2.由根与系数关系得解得a=3.所以a+b=5.

13.B共轭复数的计算.z=2i/1+i=2i(1-i)f(1+i)(1-i)=1+i复数z=2i/1的共扼复数是1-i.

14.B由于函数为偶函数,因此函数图像关于y对称。

15.D

16.D解三角形的余弦定理.由余弦定理,得5=b2+22-2×b×2×2/3,解得b=3(b=1/3舍去),

17.C自变量x能取到2,但是不能取-2,因此答案为C。

18.D

19.A

20.C

21.π/2

22.λ=1,μ=4

23.7

24.

,由题可知,所以周期T=

25.2双曲线的定义.b2=3,.所以b=.所以2b=2.

26.

27.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.

28.等腰或者直角三角形,

29.12,高三年级应抽人数为300*40/1000=12。

30.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2

31.56

32.0.54,由于甲击中的事件和乙击中的事件互相独立,因此可得甲乙同时击中的概率为P=0.6*0.9=0.54.

33.1<a<4

34.27

35.-2算法流程图的运算.初始值x=1/16不满足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.

36.00。将x=2代入f(x)得,f(2)=0。

37.20流程图的运算.由题意可知第一次a=5,s=1,满足a≥4,S=1×5=5,a=a-1=4,当a=4时满足a≥4,输出S=20.综上所述,答案20.

38.{x|0<x<1/3}

39.(0,3).利用导数求函数的极值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因为x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).

40.-2/3平面向量的线性运算.由题意,得A×b=0.所以x+2(x+1)=0.所以x=-2/3.

41.

42.

43.

44.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

45.

46.

47.证明:任取且x1<x2∴即∴在是增函数

48.

49.

50.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

51.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次为7-d,10,18+d依题意,有(7-d)(18+d)=100,解得d=2或d=-13,又因为成等差数列的三个数为正数,所以d=2.故{bn}的第3项为5,公比为2;由b3=b1×22,即5=b1×22,解得b1=f;所以{bn}是以5/4为首项,2为公比的等比数列,其通项公式为bn=5/4×2n-1=5×2n-3.

52.

53.(1)如图,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于平面ABCD,∴PD⊥CD.∵PD∩AD=D,∴CD⊥平面PAD,又PA包含于平面PAD,∴PA⊥CD.(2)解∵BC//AD,∴∠PAD即为异面直线PA与BC所成的角.由(1)知,PD⊥AD,在Rt△PAD中,PD=AD,故∠PAD=45°即为所求.

54.(1)设椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论