版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年湖北省黄冈市普通高校高职单招数学二模测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.cos215°-sin215°=()A.
B.
C.
D.-1/2
2.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12
3.下列函数为偶函数的是A.B.C.
4.设是l,m两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l//α,α∩β=m,则l//m
B.若l//α,m⊥l,则m⊥α
C.若l//α,m//α,则l//m
D.若l⊥α,l///β则a⊥β
5.已知x与y之间的一组数据:则y与x的线性回归方程为y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,4)
6.“x=1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
7.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥
8.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.0B.-8C.2D.10
9.
10.A.2B.1C.1/2
11.直线以互相平行的一个充分条件为()A.以都平行于同一个平面
B.与同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
12.设函数f(x)=x2+1,则f(x)是()
A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
13.如图所示的程序框图,当输人x的值为3时,则其输出的结果是()A.-1/2B.1C.4/3D.3/4
14.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
15.A.3/5B.-3/5C.4/5D.-4/5
16.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/3
17.若集合A={1,2},集合B={1},则集合A与集合B的关系是()A.
B.A=B
C.B∈A
D.
18.下列函数是奇函数且在区间(0,1)内是单调递增的是()A.y=xB.y=lgxC.y=ex
D.y=cosx
19.若实数a,b满足a+b=2,则3a+3b的最小值是()A.18
B.6
C.
D.
20.A.10B.5C.2D.12
二、填空题(20题)21.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f⑴=______.
22._____;_____.
23.
24.已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-l)y+2=0(a∈R)则l1⊥l2的充要条件是a=______.
25.在平面直角坐标系xOy中,直线2x+ay-1=0和直线(2a-1)x-y+1=0互相垂直,则实数a的值是______________.
26.
27.
28.函数y=x2+5的递减区间是
。
29.
30.双曲线x2/4-y2/3=1的离心率为___.
31.若=_____.
32.设A(2,-4),B(0,4),则线段AB的中点坐标为
。
33.抛物线y2=2x的焦点坐标是
。
34.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
35.化简
36.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.
37.已知_____.
38.已知函数则f(f⑶)=_____.
39.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.
40.等差数列的前n项和_____.
三、计算题(5题)41.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
42.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
43.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
44.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
45.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
四、简答题(5题)46.证明:函数是奇函数
47.已知的值
48.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
49.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
50.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
五、解答题(5题)51.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.
52.求函数f(x)=x3-3x2-9x+5的单调区间,极值.
53.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
54.(1)在给定的直角坐标系中作出函数f(x)的图象;(2)求满足方程f(x)=4的x的值.
55.
六、证明题(2题)56.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
57.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
参考答案
1.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,
2.D圆的切线方程的性质.圆方程可化为C(x-l)2+(y-1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x+4y=
3.A
4.D空间中直线与平面的位置关系,平面与平面的位置关系.对于A:l与m可能异面,排除A;对于B;m与α可能平行或相交,排除B;对于C:l与m可能相交或异面,排除C
5.D线性回归方程的计算.由于
6.A充要条件的判断.若x=1,则x2-1=0成立.x2-1=0,则x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要条件.
7.B几何体的三视图.由三视图可知该几何体为空心圆柱
8.B直线之间位置关系的性质.由k=4-m/m+2=-2,得m=-8.
9.D
10.B
11.D根据直线与平面垂直的性质定理,D正确。
12.B由题可知,f(x)=f(-x),所以函数是偶函数。
13.B程序框图的运算.当输入的值为3时,第一次循环时,x=3-3=0,所以x=0≤0成立,所以y=0.50=1.输出:y=1.故答案为1.
14.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)
15.D
16.C古典概型.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有1种:1,3;则要求的概率为1/6.
17.A由于B中的元素也存在于A,因此B包含于A。
18.A由奇函数定义已知,y=x既是奇函数也单调递增。
19.B不等式求最值.3a+3b≥2
20.A
21.-3.函数的奇偶性的应用.∵f(x)是定义在只上的奇函数,且x≤0时,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.
22.2
23.
24.1/3充要条件及直线的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3
25.2/3两直线的位置关系.由题意得-2/a×(2a-1)=-1,解得a=2/3
26.a<c<b
27.R
28.(-∞,0]。因为二次函数的对称轴是x=0,开口向上,所以递减区间为(-∞,0]。
29.1
30.e=双曲线的定义.因为
31.
,
32.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。
33.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,
∴2p=2,得P/2=1/2
∵抛物线开口向右且以原点为顶点,
∴抛物线的焦点坐标是(1/2,0)。
34.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
35.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
36.-3,
37.
38.2e-3.函数值的计算.由题意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.
39.36,
40.2n,
41.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
42.
43.
44.
45.
46.证明:∵∴则,此函数为奇函数
47.
∴∴则
48.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
49.
50.∵(1)这条弦与抛物线两交点
∴
51.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于平面PAC,AC包含于平面PAC,∴CD丄平面PAC.(2)证明∵AB//CD,CD丄平面PAC,∴AB丄平面PAC,AB包含于平面PAB,∴平面PAB丄平面PAC.
52.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0时,-1<x<3.∴f(x)单调增区间为(-∞,-1],[3,+∞),单调减区间为[-1,3].f(x)极大值为f(-1)=l0,f(x)极小值为f(3)=-22.
53.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025机械设备租赁合同书范本
- 2025科技公司标准劳动合同范本
- 甘肃省酒泉市肃州中学2026届九年级物理第一学期期中检测模拟试题含解析
- 青岛购车合同(标准版)
- 2026届贵州省凯里市第十二中学物理八上期末考试模拟试题含解析
- 2025至2030中国灵芝多糖液行业市场深度调研及发展趋势与投资风险报告
- 卖房协议书注意事项
- 新疆安全员b证题库大全及答案解析
- BIM信息访问权限控制-洞察与解读
- 2025至2030铁矿行业发展研究与产业战略规划分析评估报告
- 【西方文论】第15讲 新历史主义学习资料
- 《无线传感网络技术》课件
- 十八项核心制度
- 访客登记表格
- 航空器租赁合同模板
- 风电、光伏项目前期及建设手续办理流程汇编
- 2024-2025学年北京八中九年级(上)期中数学试卷
- 草果种质资源保护与利用
- 苏州市2024-2025学年五年级上学期11月期中调研数学试卷一(有答案)
- 重度哮喘诊断与处理中国专家共识(2024)解读
- 2024广东珠海市强制隔离戒毒所招聘3人易考易错模拟试题(共500题)试卷后附参考答案
评论
0/150
提交评论