2021年贵州省毕节地区普通高校高职单招数学一模测试卷(含答案)_第1页
2021年贵州省毕节地区普通高校高职单招数学一模测试卷(含答案)_第2页
2021年贵州省毕节地区普通高校高职单招数学一模测试卷(含答案)_第3页
2021年贵州省毕节地区普通高校高职单招数学一模测试卷(含答案)_第4页
2021年贵州省毕节地区普通高校高职单招数学一模测试卷(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年贵州省毕节地区普通高校高职单招数学一模测试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.下表是某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,用最小二乘法得到y关于x的线性回归方程y^=0.7x+a,则a=()A.0.25B.0.35C.0.45D.0.55

2.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.600

3.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2

4.A.1B.2C.3D.4

5.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}

6.A.B.C.D.

7.当时,函数的()A.最大值1,最小值-1

B.最大值1,最小值

C.最大值2,最小值-2

D.最大值2,最小值-1

8.函数y=的定义域是()A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]

9.焦点在y轴的负半轴上且焦点到准线的距离是2的抛物线的标准方程是()A.y2=-2x

B.x2=-2y

C.y2=-4x

D.x2=-4y

10.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120

11.下列函数中是奇函数,且在(-∞,0)减函数的是()A.y=

B.y=1/x

C.y==x2

D.y=x3

12.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+

B.(x-)2+

C.(x+1)2+2

D.(x+1)2+1

13.A.7B.8C.6D.5

14.A.1/4B.1/3C.1/2D.1

15.下列函数为偶函数的是A.B.C.

16.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

17.在△ABC中,A=60°,|AB|=2,则边BC的长为()A.

B.7

C.

D.3

18.下列函数中,在区间(0,)上是减函数的是()A.y=sinxB.y=cosxC.y=xD.y=lgx

19.从1、2、3、4、5五个数字中任取1数,则抽中偶数的概率是()A.0B.1/5C.3/5D.2/5

20.若f(x)=logax(a>0且a≠1)的图像与g(x)=logbx(b>0,b≠1)的关于x轴对称,则下列正确的是()A.a>bB.a=bC.a<bD.AB=1

二、填空题(20题)21.不等式(x-4)(x+5)>0的解集是

22.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.

23.

24.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.

25.若f(x-1)=x2-2x+3,则f(x)=

26.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.

27.

28.双曲线x2/4-y2/3=1的虚轴长为______.

29.过点A(3,2)和点B(-4,5)的直线的斜率是_____.

30.

31.

32.若展开式中各项系数的和为128,则展开式中x2项的系数为_____.

33.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.

34.Ig0.01+log216=______.

35.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.

36.

37.如图是一个程序框图,若输入x的值为8,则输出的k的值为_________.

38.在等比数列{an}中,a5

=4,a7

=6,则a9

=

39.在△ABC中,若acosA=bcosB,则△ABC是

三角形。

40.函数f(x)=-X3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________________.

三、计算题(5题)41.解不等式4<|1-3x|<7

42.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

43.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

44.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

45.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

四、简答题(5题)46.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

47.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

48.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

49.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

50.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。

五、解答题(5题)51.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.

52.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1时有极值0.(1)求常数a,b的值;(2)求f(x)的单调区间.

53.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

54.

55.

六、证明题(2题)56.

57.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

参考答案

1.B线性回归方程的计算.由题可以得出

2.B

3.D

4.C

5.B集合的运算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}

6.C

7.D,因为,所以,,,所以最大值为2,最小值为-1。

8.C自变量x能取到2,但是不能取-2,因此答案为C。

9.D

10.B

11.B函数奇偶性,增减性的判断.A是非奇非偶函数;C是偶函数;D是增函数.

12.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。

13.B

14.C

15.A

16.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,

17.C解三角形余弦定理,面积

18.B,故在(0,π/2)是减函数。

19.D由于在5个数中只有两个偶数,因此抽中偶数的概率为2/5。

20.D

21.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

22.45°,由题可知,因此B=45°。

23.{x|1<=x<=2}

24.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.

25.

26.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.

27.(-∞,-2)∪(4,+∞)

28.2双曲线的定义.b2=3,.所以b=.所以2b=2.

29.

30.

31.-1/16

32.-189,

33.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.

34.2对数的运算.lg0.01+lg216=lg1/100+㏒224=-2+4=2.

35.-3或7,

36.x+y+2=0

37.4程序框图的运算.执行循环如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2时;x=2×35+1=71,k=3时;x=2×71+1=143>115,k=4,此时满足条件.故输出k的值为4.

38.

39.等腰或者直角三角形,

40.(0,3).利用导数求函数的极值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因为x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).

41.

42.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

43.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

44.

45.

46.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

47.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

48.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

49.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

50.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴

51.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为DD1,CC1的中点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论