




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年陕西省咸阳市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.下表是某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,用最小二乘法得到y关于x的线性回归方程y^=0.7x+a,则a=()A.0.25B.0.35C.0.45D.0.55
2.A.1B.2C.3D.4
3.A.B.C.
4.已知x与y之间的一组数据:则y与x的线性回归方程为y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,4)
5.过点C(-3,4)且平行直线2x-y+3=0的直线方程是()A.2x-y+7=0B.2x+y-10=OC.2x-y+10=0D.2x-y-2=0
6.A.B.{3}
C.{1,5,6,9}
D.{1,3,5,6,9}
7.设i是虚数单位,若z/i=(i-3)/(1+i)则复数z的虚部为()A.-2B.2C.-1D.1
8.设集合,则A与B的关系是()A.
B.
C.
D.
9.2与18的等比中项是()A.36B.±36C.6D.±6
10.已知集合M={1,2,3,4},以={-2,2},下列结论成立的是()A.N包含于MB.M∪N=MC.M∩N=ND.M∩N={2}
二、填空题(10题)11.若=_____.
12.
13.函数f(x)=+㏒2x(x∈[1,2])的值域是________.
14.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
15.已知向量a=(1,-1),b(2,x).若A×b=1,则x=______.
16.1+3+5+…+(2n-b)=_____.
17.
18.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
19.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.
20.己知0<a<b<1,则0.2a
0.2b。
三、计算题(5题)21.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
22.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
24.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
25.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
四、简答题(10题)26.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
27.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
28.简化
29.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
30.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数
31.解关于x的不等式
32.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
33.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
34.化简
35.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
五、解答题(10题)36.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
37.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.
38.
39.
40.(1)在给定的直角坐标系中作出函数f(x)的图象;(2)求满足方程f(x)=4的x的值.
41.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.
42.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
43.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样
44.已知函数f(x)=x2-2ax+a,(1)当a=2时,求函数f(x)在[0,3]上的值域;(2)若a<0,求使函数f(x)=x2-2ax+a的定义域为[―1,1],值域为[一2,2]的a的值.
45.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
六、单选题(0题)46.下列结论中,正确的是A.{0}是空集
B.C.D.
参考答案
1.B线性回归方程的计算.由题可以得出
2.C
3.C
4.D线性回归方程的计算.由于
5.C由于直线与2x-y+3=0平行,因此可以设直线方程为2x-y+k=0,又已知过点(-3,4)代入直线方程得2*(-3)-4+k=0,即k=10,所以直线方程为2x-y+10=0。
6.D
7.C复数的运算及定义.
8.A
9.D
10.D集合的包含关系的判断.两个集合只有一个公共元素2,所以M∩N={2}
11.
,
12.0.4
13.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].
14.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
15.1平面向量的线性运算.由题得A×b=1×2+(-1)×x=2-x=1,x=1。
16.n2,
17.-5或3
18.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
19.
20.>由于函数是减函数,因此左边大于右边。
21.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
22.
23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
24.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
25.
26.
27.(1)∵
∴又∵等差数列∴∴(2)
28.
29.
30.
31.
32.(1)(2)∴又∴函数是偶函数
33.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
34.
35.∵(1)这条弦与抛物线两交点
∴
36.
37.(1)由题意知
38.
39.
40.
41.
42.
43.C
44.
45.(1)∵PA垂直于⊙O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海餐饮员工管理制度
- 企业环保考核管理制度
- 中职学校教师管理制度
- dq冰淇淋店管理制度
- 企业值班各项管理制度
- 中山文明施工管理制度
- 关于家庭教育的论文1000字
- 留学生综合素质培养与人工智能技术融合路径
- 宠物托运服务中的客户体验提升策略
- 人工智能在环保领域中的应用与未来发展方向
- 2025年《安全生产月》活动总结报告
- 2025年江苏高考真题化学试题(解析版)
- 2024协警辅警考试公安基础知识考试速记辅导资料
- 《平行四边形的面积》说课课件
- 2025年九年级语文中考最后一练口语交际(全国版)(含解析)
- 一例高血压护理个案
- 中国强军之路课件
- GB/T 18913-2025船舶与海洋技术航海气象图传真接收机
- 2025-2030中国风力发电机机舱行业市场现状供需分析及投资评估规划分析研究报告
- 2025年广东省深圳市龙岗区中考英语二模试卷
- 2024年注册会计师考试《会计》真题及答案解析
评论
0/150
提交评论