初中圆的知识点(汇总10篇)_第1页
初中圆的知识点(汇总10篇)_第2页
初中圆的知识点(汇总10篇)_第3页
初中圆的知识点(汇总10篇)_第4页
初中圆的知识点(汇总10篇)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/1初中圆的知识点(汇总10篇)

2、与圆有关的概念

(1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径)

(2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆)

(3)等圆(半径相等的两个圆叫做等圆)

3、点和圆的位置关系:

如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,则:

(1)dr→圆外

4、三角形的外接圆

经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。

一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。

5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

(2)平分弧的直径,垂直平分弧所对的弦。

6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

7、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论:半圆(或直径)所对的圆周角是直角,90°圆周角所对的弦是直径。同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。

8、弧长及扇形的面积圆锥的侧面积和全面积

(1)弧长公式:lnr180

nr21lr(2)扇形的面积公式:3602

(3)圆锥的侧面积公式:rl

(4)圆锥的表面积公式:rlr

9、圆与圆的位置关系

①两圆外离d﹥R+r

②两圆外切d=R+r

③两圆相交R-r﹤d﹤R+r(R﹥r)

④两圆内切d=R-r(R﹥r)

⑤两圆内含d﹤R-r(R﹥r)

初中圆的知识点第2篇定义:

两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

两个圆有两个交点,叫做两个圆的相交。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

原理:圆心距和半径的数量关系:

两圆外离d>R+r两圆外切d=R+r两圆相交R-r=r)

两圆内切d=R-r(R>r)两圆内含dr)

初中圆的知识点第3篇一.圆的定义

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二.圆心

1.定义1中的定点为圆心。

2.定义2中绕的那一端的端点为圆心。

3.圆任意两条对称轴的交点为圆心。

4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

8.圆的半径或直径决定圆的大小,圆心决定圆的位置。

三.圆的基本性质

1.圆的对称性

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2.垂径定理

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5.夹在平行线间的两条弧相等。

(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。)

6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

四.圆和圆

1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

3.两个圆有两个交点,叫做两个圆的相交。

4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

五.正多边形和圆

1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2.正多边形与圆的关系:

(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

初中圆的知识点第4篇1.不在同一直线上的三点确定一个圆。

2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的集合

5.圆的内部可以看作是圆心的距离小于半径的点的集合

6.圆的外部可以看作是圆心的距离大于半径的点的集合

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12.①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理圆的切线垂直于经过切点的半径

15.推论1经过圆心且垂直于切线的直线必经过切点

16.推论2经过切点且垂直于切线的直线必经过圆心

17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

21.定理相交两圆的连心线垂直平分两圆的公共弦

22.定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于(n-2)×180°/n

25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积Sn=pnrn/2p表示正n边形的周长

27.正三角形面积√3a/4a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29.弧长计算公式:L=n兀R/180

30.扇形面积公式:S扇形=n兀R^2/360=LR/2

31.内公切线长=d-(R-r)外公切线长=d-(R+r)

32.定理一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35.弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr

初中圆的知识点第5篇圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:

①k不存在,验证是否成立

②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

初中圆的知识点第6篇①直线和圆无公共点,称相离。AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

初中圆的知识点第7篇集合:

圆:圆可以看作是到定点的距离等于定长的点的集合;

圆的外部:可以看作是到定点的距离大于定长的点的集合;

圆的内部:可以看作是到定点的距离小于定长的点的集合

轨迹:

1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;

2、到线段两端点距离相等的点的轨迹是:线段的中垂线;

3、到角两边距离相等的点的轨迹是:角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

圆周角定理推论:

圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。

①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。

②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。

③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。)

④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。

⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

⑥在同圆或等圆中,圆周角相等弧相等弦相等。

圆周运动

1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

2、描述匀速圆周运动快慢的物理量

(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上

xx匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。

(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的

(3)周期T,频率f=1/T

(4)线速度、角速度及周期之间的关系:

3、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。

4、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,

5,注意的结论:

(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。

(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。

(3)做匀速圆周运动的物体受到的合外力就是向心力。

6、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。

初中圆的知识点第8篇第一、基础知识系统化。

看到一道题,我们要知道它在考什么,我们要明确的知道每一个知识点来源于那一部分知识。牢记每一部分知识的重点,难点以及易错点能够大大降低我们的出错率。就像看到分式方程一定要想到验根,看到一元二次方程一定要想到算一下△,看到等腰三角形一定要注意分类讨论并且想到三线合一。

初中学过的'所有知识都有着他最基础的一部分以及较难掌握的一部分,这就对应着我们中考要求中ABC三类不同的要求,我们对于每一部分知识都要做到心中有数,尤其是几何的模型,例如圆与切线当中的单切线,双切线以及三切线,相似当中的非垂直相似,双垂直相似以及三垂直相似模型,我们都要了然于胸,这才能使得我们做题的思路来得更快更清晰。

再者,对于构造等腰三角形以及直角三角形来说,经常需要讨论谁是腰谁是底边,哪个是直角边哪个是斜边,这里系统化的方法就变得特别的重要了。为了保证讨论的情况不丢不落,必须要按照一定的原则进行划分,否则拼拼凑凑就有可能有丢的有重复的。因此,我们一定要学会对于基本题型的总结,对于基本知识点的归纳,以保证我们做题的顺畅与严谨。

第二、基础知识全面化。

为什么这个重要,因为全面化的知识能给我们提供更多的思路和更宽的解题空间。比如说三角形中重要的线段,很多同学都会说角平分线,中线和高,那么实际上还有一条非常重要的线段——中位线。这条线段尽管不是和前三条一起讲的但是在求解三角形的问题当中经常会用到,那么如果我们做题当中意识不到三角形中位线的问题,那么很可能就做不出辅助线。

因此将知识点规整在一个整体当中是非常有利于我们进行联想和应用的。再比如,求解线段长,都能用到什么方法,大部分同学都能说出很多种,例如勾股定理,相似三角形,全等三角形,三角函数,特殊三角形的性质等等,但是诸如面积法,以及构造平行四边形等方法却经常被遗忘。这就是归纳方法的不彻底,而后者往往是解决综合题中有可能会用到的方法,所以归纳的彻底相当的重要。

再例如证明题中推导角度的问题,除了大家一直比较敏感的三线八角,在我们学过相似和全等之后,便经常习惯于用这几种方法求解角与角的关系,而事实上还有两个非常重要的方法最容易被忽略,一是“三角形内角和=180°”二是“三角形的一个外角等于与他不相邻的两个内角之和”,干瞪眼就是看不出来这是外角的同学大有人在,所以,在学过的知识逐渐变得丰富之后,我们要善于整理,把学过的每一个知识点整理到一起,串成线,吊起来一串圆,要能够知道里面一共有多少个定理,多少种提醒常见的题型;吊起一串直角,要想到什么地方能够见到直角,直角三角形有什么性质和作用。所以大家要全面总结每一部分考点涉及到的知识,每一种知识涉及到的解题方法。这样才能保证我们思路开阔,方法灵活,不至于说看一道题能想出来的方法死活做不出来,应该用到的方法死活想不到。

第三、基础知识深度化。

这部分就关系到我们后面的综合题了。深度化,也就是对于基础知识的应用与迁移。中考是没有难题的,我们所说的难题只不过是将许多简单的知识点有机的结合在一起,或稍作变形,或稍加隐藏。那么这部分就需要大家能够灵活并且熟练的应用我们的基础知识进行解答。灵活运用的前提,就是对于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论