




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7页共7页高二数学知识点总结选修第二章圆锥曲线与方程11、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.12、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点轴长短轴的长长轴的长焦点焦距对称性关于轴、轴、原点对称离心率准线方程13、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则.14、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点轴长虚轴的长实轴的长焦点焦距对称性关于轴、轴对称,关于原点中心对称离心率准线方程渐近线方程16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则.18、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.20、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则.21、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程离心率范围第三章空间向量与立体几何22、空间向量的概念:在空间,具有大小和方向的量称为空间向量.向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量的大小称为向量的模(或长度),记作.模(或长度)为的向量称为零向量;模为的向量称为单位向量.与向量长度相等且方向相反的向量称为的相反向量,记作.方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点为起点的两个已知向量、为邻边作平行四边形,则以起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边形法则.求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点,作,,则.24、实数与空间向量的乘积是一个向量,称为向量的数乘运算.当时,与方向相同;当时,与方向相反;当时,为零向量,记为.的长度是的长度的倍.25、设,为实数,,是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:;结合律:.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量,,的充要条件是存在实数,使.28、平行于同一个平面的向量称为共面向量.29、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,,使;或对空间任一定点,有;或若四点,,,共面,则.30、已知两个非零向量和,在空间任取一点,作,,则称为向量,的夹角,记作.两个向量夹角的取值范围是:.31、对于两个非零向量和,若,则向量,互相垂直,记作.32、已知两个非零向量和,则称为,的数量积,记作.即.零向量与任何向量的数量积为.33、等于的长度与在的方向上的投影的乘积.34、若,为非零向量,为单位向量,则有;35、向量数乘积的运算律:36、若,,是空间三个两两垂直的向量,则对空间任一向量,存在有序实数组,使得,称,,为向量在,,上的分量.37、空间向量基本定理:若三个向量,,不共面,则对空间任一向量,存在实数组,使得.38、若三个向量,,不共面,则所有空间向量组成的集合是.这个集合可看作是由向量,,生成的,称为空间的一个基底,,,称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设,,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,,的公共起点为原点,分别以,,的方向为轴,轴,轴的正方向建立空间直角坐标系.则对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量.存在有序实数组,使得.把,,称作向量在单位正交基底,,下的坐标,记作.此时,向量的坐标是点在空间直角坐标系中的坐标.40、设,,则.若、为非零向量,则.若,则.则.41、在空间中,取一定点作为基点,那么空间中任意一点的位置可以用向量来表示.向量称为点的位置向量.42、空间中任意一条直线的位置可以由上一个定点以及一个定方向确定.点是直线上一点,向量表示直线的方向向量,则对于直线上的任意一点,有,这样点和向量不仅可以确定直线的位置,还可以具体表示出直线上的任意一点.43、空间中平面的位置可以由内的两条相交直线来确定.设这两条相交直线相交于点,它们的方向向量分别为,.为平面上任意一点,存在有序实数对,使得,这样点与向量,就确定了平面的位置.44、直线垂直,取直线的方向向量,则向量称为平面的法向量.45、若空间不重合两条直线,的方向向量分别为,,则46、若直线的方向向量为,平面的法向量为,且,则47、若空间不重合的两个平面,的法向量分别为,,则48、设异面直线,的夹角为,方向向量为,,其夹角为,则有49、设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有.50、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小.若二面角的平面角为,则.51、点与点之间的距离可以转化为两点对应向量的模计算.52、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为.53、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为.高二数学知识点总结选修(二)必修2一、基础知识(1)空间几何体:典型多面体(棱柱、棱锥、棱台)与典型旋转体(圆柱、圆锥、圆台、球)的结构特征以及表面积体积公式、球面距离、点面距离、中心投影与平行投影、三视图、直观图;(2)点、线、面的位置关系:平面的三个公理、平行的传递性、等角定理、异面直线的概念、直线与平面的位置关系、平面与平面的位置关系、线面平行的概念、判定定理、性质定理;面面平行的概念、判定定理、性质定理;线面垂直的概念、判定定理、性质定理;面面垂直的概念、判定定理与性质定理;异面垂直、异面直线所成角、线面角与二面角的概念(不同版本出现时间略有不同).(3)直线与圆:直线的倾斜角与斜率、斜率公式、直线的方程(点斜式、斜截式、一般式、两点式、截距式)、直线与直线的位置关系(平行、垂直)、平面直角坐标系中的一些公式(两点间距离公式、中点坐标公式、点到直线的距离公式、平行线间的距离公式);圆的标准方程与一般方程、直线与圆的位置关系、圆与圆的位置关系.常用的拓展知识与结论有:截距坐标公式、面积坐标公式、圆上一点的切线方程;圆外一点的切点弦方程;直线系与圆系的相关知识等.想不起来,或者不太清楚这些概念与定理的,赶快翻翻教材和笔记吧.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)多面体的体积转化及点面距离的求法;(2)较复杂的三视图;(4)平行与垂直的证明;(5)立体几何中的动态问题.(6)直线方程的选择与求解,特别要注意斜率不存在的直线;(7)直线与圆的位置关系问题;(8)直线系相关的问题.高二数学知识点总结选修(三)选修2-1第一章常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若,则”,它的逆命题为“若,则”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若,则”,则它的否命题为“若,则”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若,则”,则它的否命题为“若,则”.6、四种命题的真假性:原命题逆命题否命题逆否命题种命题的真假性之间的关系:两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若,则是的充分条件,是的必要条件.若,则是的充要条件(充分必要条件).8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作.当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题.用联结词“或”把命题和命题联结起来,得到一个新命题,记作.当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探索光的奥秘
- 江苏名校2024-2025学年高考化学试题模拟题及解析(全国Ⅰ卷)含解析
- 天津机电职业技术学院《材料成型原理与工艺》2023-2024学年第二学期期末试卷
- 苏州大学应用技术学院《生物反应工程实验》2023-2024学年第二学期期末试卷
- 四川省成都市龙泉驿区达标名校2025届初三第6次月考数学试题含解析
- 辽宁工业大学《藏族文化概论》2023-2024学年第一学期期末试卷
- 四川铁道职业学院《跨文化交际(日)》2023-2024学年第一学期期末试卷
- 2025年小学数学期末考试试卷及答案
- 2025年医师执业资格考试试题及答案
- 天津市职业大学《日语Ⅲ》2023-2024学年第二学期期末试卷
- 商铺装修管理规定
- 铁路心理测试题及答案
- 西北四省(陕西山西青海宁夏)2025届高三下学期第一次联考数学试卷含答案
- 全国卫生健康系统职业技能竞赛(传染病防治监督)参考试题(附答案)
- 旅游大类《服务礼仪》2026年版广西高等职业教育考试(新职教高考)《服务礼仪》模拟试卷(第35套)
- (一模)临沂市2025届高三高考第一次模拟考试地理试卷
- GB/T 18760-2025消费品售后服务方法与要求
- 《大学物理(上册)》课件-第8章
- 小学高年级学生身体满意度和人际关系困扰的关系及自尊的中介作用
- 河南省郑州市2025届高三上学期二模英语试题(含解析含听力原文无音频)
- 医院保密知识培训课件
评论
0/150
提交评论