人教版九下:28.2.2应用举例教案_第1页
人教版九下:28.2.2应用举例教案_第2页
人教版九下:28.2.2应用举例教案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解直角三角形应用举例—方位角问题教学目标:知识与技能:1、使学生了解方位角的特征,能准确表示出方位角。2、巩固用三角函数及勾股定理有关知识解决实际问题,学会用方位角解决航海问题.过程与方法:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力,体会解决问题的思维过程。情感态度与价值观:渗透数形结合的数学思想,培养学生良好的学习习惯.学会合作探究,提高学生的学习数学的兴趣。教学重点、难点重点:用三角函数及勾股定理有关知识解决航海问题难点:学会准确分析问题并将实际问题转化成数学模型教学过程:一、复习旧知、引入新课【复习】1、创设情境,引入航海问题。2、回顾方位角。二、探索新知、分类应用【活动一】思考、船有触礁的危险吗?例1海中有一个小岛A,它周围8千米内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东600方向上,航行12千米到达C点,这时测得小岛A在北偏东300方向上。如果渔船不改变航线继续向东航行,有没有触礁的危险?这个问题归结为:在Rt△ABC中,已知∠BAF=60°,DB=12,∠DAF=300求出AF的长与8比较大小。如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东340方向上的B处,这时,B处距离灯塔P有多远?(结果取整数)方法小结:利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题;(画出平面图形,转化为解直角三角形的问题)(2)根据问题中的条件,适当选用锐角三角函数或勾股定理解直角三角形;(3)得到数学问题的答案;(4)检验是否符合题意,得到实际问题的答案。【探究活动二】思考1、一艘船自西向东航行,航行到什么位置时离小岛最近?为什么?垂线段最短【巩固训练】

变式练习如图所示,A、B两城市相距200km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区?(参考数据:≈,≈.PAPA三、归纳小结:1.把实际问题转化成数学问题:一是将实际问题的图形转化为几何图形,画出正确的平面示意图,二是将已知条件转化为示意图中的边或角或它们之间的关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论