




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时其他学科中的反比例函数1.能够从物理等其他学科问题中建构反比例函数模型;(重点)2.从实际问题中寻找变量之间的关系,利用所学知识分析物理等其他学科的问题,建立函数模型解决实际问题.(难点)一、情境导入问题:某校科技小组进行野外考察,途中遇到一片十几米宽的湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成任务.问题思考:(1)请你解释他们这样做的道理;(2)当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?二、合作探究探究点:反比例函数在其他学科中的应用【类型一】反比例函数与电压、电流和电阻的综合已知某电路的电压U(V),电流I(A)和电阻R(Ω)三者之间有关系式为U=IR,且电路的电压U恒为6V.(1)求出电流I关于电阻R的函数表达式;(2)如果接入该电路的电阻为25Ω,则通过它的电流是多少?(3)如图,怎样调整电阻箱R的阻值,可以使电路中的电流I增大?若电流I=,求电阻R的值.解析:(1)根据电流I(A)是电阻R(Ω)的反比例函数,设出I=eq\f(U,R)(R≠0)后把U=6V代入求得表达式即可;(2)将R=25Ω代入上题求得的函数关系式即可得电流的值;(3)根据两个变量成反比例函数关系确定答案,然后代入求得R的值即可.解:(1)∵某电路的电压U(V),电流I(A)和电阻R(Ω)三者之间有关系式U=IR,∴I=eq\f(U,R),代入U=6V得I=eq\f(6,R),∴电流I关于电阻R的函数表达式是I=eq\f(6,R);(2)∵当R=25Ω时,I=eq\f(6,25)=,∴电路的电阻为25Ω时,通过它的电流是;(3)∵I=eq\f(6,R),∴电流与电阻成反比例函数关系,∴要使电路中的电流I增大可以减小电阻.当I=时,=eq\f(6,R),解得R=15Ω.方法总结:明确电压、电流和电阻的关系是解决问题的关键.【类型二】反比例函数与气体压强的综合某容器内充满了一定质量的气体,当温度不变时,容器内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求出这个函数的解析式;(2)当容器内的气体体积是时,此时容器内的气压是多少千帕?(3)当容器内的气压大于240kPa时,容器将爆炸,为了安全起见,容器内气体体积应不小于多少m3?解析:(1)设出反比例函数关系式,根据图象给出的点确定关系式;(2)把V=代入函数关系式,求出p的值即可;(3)因为当容器内的气压大于240kPa时,容器将爆炸,可列出不等式求解.解:(1)设这个函数的表达式为p=eq\f(k,V).根据图象可知其经过点(2,60),得60=eq\f(k,2),解得k=120.则p=eq\f(120,V);(2)当V=时,p=eq\f(120,=200(kPa);(3)当p≤240kPa时,得eq\f(120,V)≤240,解得V≥eq\f(1,2).所以为了安全起见,容器的体积应不小于eq\f(1,2)m3.方法总结:根据反比例函数图象确定函数关系式以及知道变量的值求函数值或知道函数值的范围求自变量的范围是解决问题的关键.【类型三】反比例函数与杠杆知识的综合公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆原理”,小明利用此原理,要制作一个杠杆撬动一块大石头,已知阻力和阻力臂不变,分别为1200N和.(1)动力F与动力臂l有怎样的函数关系?当动力臂为时,撬动石头至少要多大的力?(2)若想使动力F不超过(1)题中所用力的一半,则动力臂至少要加长多少?解析:(1)根据“动力×动力臂=阻力×阻力臂”,可得出F与l的函数关系式,将l=代入可求出F;(2)根据(1)的答案,可得F≤200,解出l的最小值,即可得出动力臂至少要加长多少.解:(1)Fl=1200×=600N·m,则F=eq\f(600,l).当l=时,F=eq\f(600,=400N;(2)由题意得,F=eq\f(600,l)≤200,解得l≥3m,故至少要加长.方法总结:明确“动力×动力臂=阻力×阻力臂”是解题的关键.【类型四】反比例函数与功率知识的综合某汽车的输出功率P为一定值,汽车行驶时的速度v(m/s)与它所受的牵引力F(N)之间的函数关系如下图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为2400N时,汽车的速度为多少?(3)如果限定汽车的速度不超过30m/s,则F在什么范围内?解析:(1)设v与F之间的函数关系式为v=eq\f(P,F),把(3000,20)代入即可;(2)当F=1200N时,求出v即可;(3)计算出v=30m/s时的F值,F不小于这个值即可.解:(1)设v与F之间的函数关系式为v=eq\f(P,F),把(3000,20)代入v=eq\f(P,F),得P=60000,∴这辆汽车的功率是60000W.这一函数的表达式为v=eq\f(60000,F);(2)将F=2400N代入v=eq\f(60000,F),得v=eq\f(60000,2400)=25(m/s),∴汽车的速度v=3600×25÷1000=90(km/h);(3)把v≤30代入v=eq\f(60000,F),得F≥2000(N),∴F≥2000N.方法总结:熟练掌握功率的计算公式是解决问题的关键.三、板书设计1.反比例函数与电压、电流和电阻的综合;2.反比例函数与气体压强的综合;3.反比例函数与杠杆知识的综合;4.反比例函数与功率知识的综合.本节是在上一节的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46024-2025色漆和清漆用流出杯测定流出时间
- GB/T 45856-2025真空技术真空计皮拉尼真空计的规范、校准和测量不确定度
- GB/T 45895-2025麻醉和呼吸设备医用气体不可互换螺纹(NIST)低压接头的尺寸
- 森林防火知识培训必要性
- 森林火灾知识培训内容
- 森林法基础知识培训课件
- 幼儿园培训教学课件
- 2025年老年护理专业招聘考试预测题
- 风湿疾病试题及答案
- 2025健康照护技师考试题库及答
- 《亚低温冬眠治疗》课件
- 2025年山西中阳钢铁有限公司招聘笔试参考题库含答案解析
- 2025年四川攀枝花钒钛高新国有资本投资运营有限公司招聘笔试参考题库附带答案详解
- (新版)电信网上大学智能云服务交付工程师认证考试题库-上(单选题)
- 《化工安全技术》教学设计(教学教案)
- 物理-湖北省2024年秋季鄂东南联盟学校高一年级期中联考试题和答案
- 10kV小区供配电设计、采购、施工EPC 投标方案(技术方案)
- 工业互联网边缘计算
- 劳动防护用品检查方案2
- 《论语十二章》挖空练习及答案
- 2024年福建省托育服务职业技能竞赛理论考试题库(含答案)
评论
0/150
提交评论