2023年中考数学二轮复习《图形的平移》中档题练习(含答案)_第1页
2023年中考数学二轮复习《图形的平移》中档题练习(含答案)_第2页
2023年中考数学二轮复习《图形的平移》中档题练习(含答案)_第3页
2023年中考数学二轮复习《图形的平移》中档题练习(含答案)_第4页
2023年中考数学二轮复习《图形的平移》中档题练习(含答案)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学二轮复习《图形的平移综合问题》中档题练习一 、选择题1.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别()A.4,30°B.2,60°C.1,30°D.3,60°2.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=eq\r(3),则△ABC移动的距离是()A.eq\f(\r(3),2)B.eq\f(\r(3),3)C.eq\f(\r(6),2)D.eq\r(3)-eq\f(\r(6),2)3.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.54.如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式是(

)

A.y=-2x-3

B.y=-2x-6

C.y=-2x+3

D.y=-2x+65.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2

B.3

C.4

D.1.56.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣eq\r(3))B.(﹣4,﹣2+eq\r(3))C.(﹣2,﹣2+eq\r(3))D.(﹣2,﹣2﹣eq\r(3))7.若把函数y=x的图象记为E(x,x),函数y=2x+1的图象记为E(x,2x+1)……则E(x,x2+1)可以由E(x,x2)怎样平移得到()A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位8.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的函数表达式不可能是()A.y=x2-1B.y=(x+3)2-4C.y=(x+2)2D.y=(x+4)2+19.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.8eq\r(2)10.如图,将抛物线C1:y=eq\f(1,2)x2+2x沿x轴对称后,向右平移3个单位,再向下平移5个单位,得到抛物线C2,若抛物线C1的顶点为A,点P是抛物线C2上一点,则△POA的面积的最小值为()A.3 B.3.5 C.4 D.4.511.在平面直角坐标系中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(eq\f(3,2),0)B.(2,0)C.(eq\f(5,2),0)D.(3,0)12.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG的边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()二 、填空题13.如图,将直线y=-x沿y轴向下平移后的直线恰好经过点A(2,-4),且与轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为.14.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是____________________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.15.已知在直角坐标系内,半径为2的圆的圆心坐标为(3,﹣4),当该圆向上平移m(m>0)个单位长度时,若要此圆与x轴没有交点,则m的取值范围是.16.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于_______.17.在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=2x+1以每秒1个单位的速度向下平移,经过秒该直线可将平行四边形OABC的面积平分.18.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是.三 、解答题19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.20.(1)引入:如图1,直线AB为⊙O的弦,OC⊥OA,交AB于点P,且PC=BC,直线BC是否与⊙O相切,为什么?(2)引申:如图2,记(1)中⊙O的切线为直线l,在(1)的条件下,将切线l向下平移,设平移后的直线l与OB的延长线相交于点B′,与AB的延长线相交于点E,与OP的延长线相交于点C′,找出图2中与C′P相等的线段,并说明理由.21.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.22.如图,正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在x轴的正半轴上,且A点的坐标是(1,0).(1)直线y=eq\f(4,3)x-eq\f(8,3)经过点C,且与x轴交与点E,求四边形AECD的面积;(2)若直线l经过点E且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(-eq\f(3,2),0)且与直线y=3x平行,将(2)中直线l沿着y轴向上平移eq\f(2,3)个单位后,交x轴于点M,交直线l1于点N,求△FMN的面积.23.在平面直角坐标系xOy中,点A(2,﹣1)在二次函数y=x2﹣(2m+1)x+m的图象上.(1)直接写出这个二次函数的解析式;(2)当n≤x≤1时,函数值y的取值范围是﹣1≤y≤4﹣n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x﹣h)2+k,当x<2时,y随x的增大而减小,求k的取值范围.

答案1.B.2.D.3.B.4.D5.B.6.D7.A.8.B.9.C10.B11.C.12.A13.答案为:(eq\f(2,3),0).14.答案为:③④.15.答案为:0<m<2或m>6.16.答案为:4或8.17.答案为:6.18.答案为:3eq\r(2).19.解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).20.解:(1)相切,∵OC⊥OA,∴∠AOC=90°,∴∠APO+∠OAB=90°,∵OA=OB,∴∠OAB=∠ABO,∵PC=PB,∴∠CBP=∠CPB,∵∠APO=∠CPB,∴∠CBP+∠OBA=90°,即∠OBC=90°,∴OB⊥BC∵OB为半径,∴BC与⊙O相切;(2)C′P=C′E,∵∠OB′C′=90°,∠APO+∠OAB=90°,且∠APO=∠C′PE,∴∠OAB+∠C′PE=90°,∵OA=OB,∴∠OAB=∠ABO,∴∠ABO+∠C′PE=90°,∵∠EBB′+∠BEB′=90°,且∠EBB′=∠ABO,∴∠C′PE=∠BEB′,∴C′P=C′E.21.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.22.解:(1)10;(2)y=2x-4;(3)30eq\f(1,12).23.解:(1)∵点A(2,﹣1)在二次函数y=x2﹣(2m+1)x+m的图象上,∴﹣1=4﹣2(2m+1)+m,解得m=1,∴二次函数的解析式为y=x2﹣3x+1;(2)∵y=x2﹣3x+1,∴抛物线的对称轴为直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论