版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页共页八年级数学教案范文集锦7篇八年级数学教案篇11.展示生活中一些平行四边形的实际应用图片〔推拉门,活动衣架,篱笆、井架等〕,想一想:这里面应用了平行四边形的什么性质?2.考虑:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?〔动画演示拉动过程如图〕3.再次演示平行四边形的挪动过程,当挪动到一个角是直角时停顿,让学生观察这是什么图形?〔小学学过的长方形〕引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上〔作出对角线〕,拉动一对不相邻的顶点,改变平行四边形的形状.①随着∠α的变化,两条对角线的长度分别是怎样变化的?②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,考虑、交流、归纳后得到矩形的性质.矩形性质1矩形的四个角都是直角.矩形性质2矩形的对角线相等.如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.例习题分析例1〔教材P104例1〕:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD=2OA=2×4=8〔cm〕.例2〔补充〕:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的间隔AE的长.分析:〔1〕因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法八年级数学教案篇2教学目的1、知识与技能目的学会观察图形,勇于探究图形间的关系,培养学生的空间观念.2、过程与方法(1)经历一般规律的探究过程,开展学生的抽象思维才能.(2)在将实际问题抽象成几何图形过程中,进步分析问题、解决问题的才能及浸透数学建模的思想.3、情感态度与价值观(1)通过有趣的问题进步学习数学的兴趣.(2)在解决实际问题的过程中,体验数学学习的实用性.教学重点:探究、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学准备:多媒体教学过程:第一环节:创设情境,引入新课〔3分钟,学生观察、猜测〕情景:如图:在一个圆柱石凳上,假设小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?第二环节:合作探究〔15分钟,学生分组合作探究〕学生分为4人活动小组,合作探究蚂蚁爬行的最短道路,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的道路计算方法,通过详细计算,总结出最短道路。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.学生汇总了四种方案:〔1〕〔2〕〔3〕〔4〕学生很容易算出:情形〔1〕中A→B的道路长为:AA’+d,情形〔2〕中A→B的道路长为:AA’+πd/2所以情形〔1〕的道路比情形〔2〕要短.学生在情形〔3〕和〔4〕的比拟中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形〔4〕是线段,故根据两点之间线段最短可判断〔4〕最短.如图:〔1〕中A→B的道路长为:AA’+d;〔2〕中A→B的道路长为:AA’+A’B>AB;〔3〕中A→B的道路长为:AO+OB>AB;〔4〕中A→B的道路长为:AB.得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,详细观察.接下来后提问:怎样计算AB?在Rt△AA′B中,利用勾股定理可得,假设圆柱体高为12c,底面半径为3c,π取3,那么.第三环节:做一做〔7分钟,学生合作探究〕教材23页李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,〔1〕你能替他想方法完成任务吗?〔2〕李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?〔3〕小明随身只有一个长度为20厘米的刻度尺,他能有方法检验AD边是否垂直于AB边吗?BC边与AB边呢?第四环节:稳固练习〔10分钟,学生独立完成〕1.甲、乙两位探险者到沙漠进展探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00,甲、乙两人相距多远?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近间隔.3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,铁棒在油桶外的局部为0.5米,问这根铁棒有多长?第五环节课堂小结〔3分钟,师生问答〕内容:1、如何利用勾股定理及逆定理解决最短路程问题?第六环节:布置作业〔2分钟,学生分别记录〕内容:作业:1.课本习题1.5第1,2,3题.要求:A组〔学优生〕:1、2、3B组〔中等生〕:1、2C组〔后三分之一生〕:1板书设计:教学反思:八年级数学教案篇311.1与三角形有关的线段11.1.1三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.老师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完好的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有()A.2个B.3个C.4个D.5个解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).应选B.方法总结:数三角形的个数,可以按照数线段条数的方法,假如一条线段上有n个点,那么就有n〔n-1〕2条线段,也可以与线段外的一点组成n〔n-1〕2个三角形.探究点二:三角形的三边关系【类型一】断定三条线段能否组成三角形以以下各组线段为边,能组成三角形的是()A.2c,3c,5cB.5c,6c,10cC.1c,1c,3cD.3c,4c,9c解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.应选B.方法总结:断定三条线段能否组成三角形,只要断定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是()A.3<x<11B.4<x<7C.-3<x<11D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.应选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进展解决.【类型三】等腰三角形的三边关系一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来断定绝对值里的式子的正负,然后去绝对值符号进展计算即可.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进展化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进展化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既进步了学生学习的兴趣,又增强了学生的动手才能.八年级数学教案篇4一、学生起点分析学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经历,如:两直线平行,有什么样的结论?反之,满足什么条件的两直线是平行?因此,本课时由勾股定理出发逆向考虑获得逆命题,学生应该已经具备这样的意识,但详细研究中可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要老师适时的引导。二、学习任务分析本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探究勾股定理的逆定理并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过详细的数,增加对勾股数的直观体验。为此确定教学目的:●知识与技能目的1.理解勾股定理逆定理的详细内容及勾股数的概念;2.能根据所给三角形三边的条件判断三角形是否是直角三角形。●过程与方法目的1.经历一般规律的探究过程,开展学生的抽象思维才能;2.经历从实验到验证的过程,开展学生的数学归纳才能。●情感与态度目的1.体验生活中的数学的应用价值,感受数学与人类生活的亲密联络,激发学生学数学、用数学的兴趣;2.在探究过程中体验成功的喜悦,树立学习的自信心。教学重点理解勾股定理逆定理的详细内容。三、教法学法1.教学方法:实验猜测归纳论证本节课的教学对象是初二学生,他们的参与意识较强,思维活泼,对通过实验获得数学结论已有一定的体验但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目的,我力求从以下三个方面对学生进展引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)利用探究,研究手段,通过思维深化,领悟教学过程。2.课前准备教具:教材、电脑、多媒体课件。学具:教材、笔记本、课堂练习本、文具。四、教学过程设计本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:登高望远;第五环节:稳固进步;第六环节:交流小结;第七环节:布置作业。第一环节:情境引入内容:情境:1.直角三角形中,三边长度之间满足什么样的关系?2.假如一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?意图:通过情境的创设引入新课,激发学生探究热情。效果:从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的根底。第二环节:合作探究内容1:探究下面有三组数,分别是一个三角形的三边长,①5,12,13;②7,24,25;③8,15,17;并答复这样两个问题:1.这三组数都满足吗?2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。意图:通过学生的合作探究,得出假设一个三角形的三边长,满足,那么这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜测和验证的过程,同时遵循由特殊一般特殊的开展规律。效果:经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足,可以构成直角三角形;②7,24,25满足,可以构成直角三角形;③8,15,17满足,可以构成直角三角形。从上面的分组实验很容易得出如下结论:假如一个三角形的三边长,满足,那么这个三角形是直角三角形内容2:说理提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:假如一个三角形的三边长,满足,那么这个三角形是直角三角形满足的三个正整数,称为勾股数。考前须知:为了让学生确认该结论,需要进展说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。活动3:反思总结提问:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?意图:进一步让学生认识该定理与勾股定理之间的关系第三环节:小试牛刀内容:1.以下哪几组数据能作为直角三角形的三边长?请说明理由。①9,12,15;②15,36,39;③12,35,36;④12,18,22解答:①②2.一个三角形的三边长分别是,那么这个三角形的面积是()A250B150C200D不能确定解答:B3.如图1:在中,于,,那么是()A等腰三角形B锐角三角形C直角三角形D钝角三角形解答:C4.将直角三角形的三边扩大一样的倍数后,(图1)得到的三角形是()A直角三角形B锐角三角形C钝角三角形D不能确定解答:A意图:通过练习,加强对勾股定理及勾股定理逆定理认识及应用效果每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。第四环节:登高望远内容:1.一个零件的形状如图2所示,按规定这个零件中都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?解答:符合要求,又,2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经历,船长指挥船左传90,继续航行70海里,那么距出发地250海里,你能判断船转弯后,是否沿正西方向航行?解答:由题意画出相应的图形AB=240海里,BC=70海里,,AC=250海里;在△ABC中=(250+240)(250-240)=4900==即△ABC是Rt△答:船转弯后,是沿正西方向航行的。意图:利用勾股定理逆定理解决实际问题,进一步稳固该定理。效果:学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将作适当变形(),以便于计算。第五环节:稳固进步内容:1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?与你的同伴交流。解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF2.如图5,哪些是直角三角形,哪些不是,说说你的理由?图4图5解答:④⑤是直角三角形,①②③⑥不是直角三角形意图:第一题考察学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考察学生如何利用网格进展计算,从而解决问题。效果:学生在对所学知识有一定的熟悉度后,可以快速做答并能简要说明理由即可。注意防漏解及网格的应用。第六环节:交流小结内容:师生互相交流总结出:1.今天所学内容①会利用三角形三边数量关系判断一个三角形是直角三角形;②满足的三个正整数,称为勾股数;2.从今天所学内容及所作练习中总结出的经历与方法:①数学是于生活又效劳于生活的;②数学结论的发现总是要经历观察、归纳、猜测和验证的过程,同时遵循由特殊一般特殊的开展规律;③利用三角形三边数量关系判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将作适当变形,便于计算。意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克制困难和运用知识解决问题的成功经历,进一步体会数学的应用价值,开展运用数学的信心和才能,初步形成积极参与数学活动的意识。效果:学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。第七环节:布置作业课本习题1.4第1,2,4题。五、教学反思:1.充分尊重教材,以勾股定理的逆向思维形式引入假如一个三角形的三边长,满足,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜测和验证的过程,同时遵循由特殊一般特殊的开展规律。3.在利用今天所学知识解决实际问题时,引导学生擅长对公式变形,便于简便计算。4.注重对学习新知理解应用偏困难的学生的进一步关注。5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。由于本班学生整体程度较高,因此本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进展适当的删减或调整。附:板书设计能得到直角三角形吗情景引入小试牛刀:登高望远八年级数学教案篇5学习目的1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。2、由坐标的变化探究新旧图形之间的变化。重点1、作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。2、根据轴对称图形的特点,轴一边的图形或坐标确定另一边的图形或坐标。难点体会极坐标和直角坐标思想,并能解决一些简单的问题学习过程(导入、探究新知、即时练习、小结、达标检测、作业)第一课时学习过程:一、旧知回忆:1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。2、坐标平面内点的坐标的表示方法____________。3、各象限点的坐标的特征:二、新知检索:1、在方格纸上描出以下各点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形三、典例分析例1、(1)将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?假如纵坐标保持不变,横坐标分别减2呢?(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?假如横坐标保持不变,纵坐标减2呢?例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?四、题组训练1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?(2)纵、横分别加3呢?(3)纵、横分别变成原来的2倍呢?归纳:图形坐标变化规律1、平移规律:2、图形伸长与压缩:第二课时一、旧知回忆:1、轴对称图形定义:假如一个图形沿着对折后两局部完全重合,这样的图形叫做轴对称图形。中心对称图形定义:在同一平面内,假如把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形二、新知检索:1、如图,左边的鱼与右边的鱼关于y轴对称。1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?2、各个对应顶点的坐标有怎样的关系?3、假如将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?三、典例分析,如下图,1、右图的鱼是通过什么样的变换得到左图的鱼的。2、假如将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。3、假如将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系四、题组练习1、将坐标作如下变化时,图形将怎样变化?①(x,y)(x,y+4)②(x,y)(x,y-2)③(x,y)(1/2x,y)④(x,y)(3x,y)⑤(x,y)(x,1/2y)⑥(x,y)(3x,3y)2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。3、如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。4、描出以下图中枫叶图案关于x轴的轴对称图形的简图。学习笔记八年级数学教案篇6活动一、创设情境引入:首先我们来看几道练习题〔幻灯片〕〔复习:平行线及三角形全等的知识〕下面我们一起来欣赏一组图片〔幻灯片〕[学生活动]观看后答问题:你看到了哪些图形?〔各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个一样的300的三角板,看能拼出哪些图案?〕[学生活动]小组合作交流,拼出图案的类型。同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探究四边形的性质。〔幻灯片出示课题〕活动二、合作交流,探求新知问题〔1〕:为什么我们把〔甲〕图叫平行四边形,而〔乙〕图不是平行四边形呢?你怎么知道这些四边形是平行四边形?〔拿一模型,幻灯片〕[学生活动]认真观察、讨论、考虑、推理。鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。〔幻灯片出示提醒课题〕问题〔2〕:由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。小结平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠期心脏病产后抗凝时机的个体化策略
- 管道潜水员考试题及答案
- 仓储账务考核试题及答案
- 妊娠合并Rett综合征的疼痛管理策略
- 妊娠合并BV的孕期管理风险分层策略
- 妇女保健数据隐私与质量平衡策略
- 女性特殊工种生殖健康防护指南
- 物理考试原理题及答案
- 前端考试题及答案
- 2025年中职外科护理学(外科感染护理)试题及答案
- 苏州市施工图无障碍设计专篇参考样式(试行)2025
- 等腰三角形重难点题型归纳(七大类型)原卷版-2024-2025学年北师大版八年级数学下册重难点题型突破
- 临时用电变压器安装方案
- 社会工作项目调研方案含问卷及访谈提纲
- 2025年包头职业技术学院单招职业技能测试题库完整版
- 全国高校辅导员素质能力大赛试题(谈心谈话、案例分析)
- 《XXXX煤矿隐蔽致灾地质因素普查报告》审查意见
- 钢结构制作焊接操作手册
- 【MOOC】生物材料伴我行-湖南大学 中国大学慕课MOOC答案
- 《手机制造流程培训》课件
- 人教版(2024新版)七年级上册数学全册重点知识点讲义
评论
0/150
提交评论