模式识别教学大纲_第1页
模式识别教学大纲_第2页
模式识别教学大纲_第3页
模式识别教学大纲_第4页
模式识别教学大纲_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Introduction

Patternrecognitiontechniquesareusedtoautomaticallyclassifyphysicalobjects(handwrittencharacters,tissuesamples)orabstractmultidimensionalpatterns(n

pointsin

d

dimensions)intoknownorpossiblyunknowncategories.Anumberofcommercialpatternrecognitionsystemsareavailableforcharacterrecognition,handwritingrecognition,documentclassification,fingerprintclassification,speechandspeakerrecognition,whitebloodcell(leukocyte)classification,militarytargetrecognition,etc.Mostmachinevisionsystemsemploypatternrecognitiontechniquestoidentifyobjectsforsorting,inspection,andassembly.Thedesignofapatternrecognitionsystemrequiresthefollowingmodules:(i)sensing,(ii)featureextractionandselection,(iii)decisionmakingand(iv)performanceevaluation.Theavailabilityoflowcostandhighresolutionsensors(e.g.,digitalcameras,microphonesandscanners)anddatasharingovertheInternethaveresultedinhugerepositoriesofdigitizeddocuments(text,speech,imageandvideo).Needforefficientarchivingandretrievalofthisdatahasfosteredthedevelopmentofpatternrecognitionalgorithmsinnewapplicationdomains(e.g.,text,imageandvideoretrieval,bioinformatics,andfacerecognition).

Designofapatternrecognitionsystemtypicallyfollowsoneofthefollowingapproaches:(i)templatematching,(ii)statisticalmethods,(iii)syntacticmethodsand(iv)neuralnetworks.Thiscoursewillintroducethefundamentalsofstatisticalpatternrecognitionwithexamplesfromseveralapplicationareas.Techniquesforanalyzingmultidimensionaldataofvarioustypesandscalesalongwithalgorithmsforprojection,dimensionalityreduction,clusteringandclassificationofdatawillbeexplained.Thecoursewillpresentvariousapproachestoexploratorydataanalysisandclassifierdesignsostudentscanmakejudiciouschoiceswhenconfrontedwithrealpatternrecognitionproblems.Itisimportanttoemphasizethatthedesignofacompletepatternrecognitionsystemforaspecificapplicationdomain(e.g.,remotesensing)requiresdomainknowledge,whichisbeyondthescopeofthiscourse.StudentswilluseavailableMATLABsoftwarelibraryandimplementsomealgorithmsusingtheirchoiceofaprogramminglanguage.

Prerequisites

CSE232,MTH314,andSTT441,orequivalentcourses.

TextBook

Duda,HartandStork,PatternClassification,SecondEdition,Wiley,2001.

Youmayfindthe

erratalist

useful.

AnumberofbooksonpatternrecognitionhavebeenputontheAssignedReadingintheEngineeringLibrary.Inaddition,anumberofjournals,includingPatternRecognition,PatternRecognitionLetters,IEEETrans.PatternAnalysis&MachineIntelligence(PAMI),IEEETrans.Geoscience&RemoteSensing,IEEETrans.ImageProcessing,andIEEETrans.Speech,Audio,andLanguageProcessingroutinelypublishpapersonpatternrecognitiontheoryandapplications.

AssignedReading

FollowingbooksareonholdintheEngineeringlibraryforassignedreadingforCSE802.

TheodoridisandKoutroumbas

PatternRecognition

ChristopherBishop

PatternRecognitionandMachineLearning

Fukunaga

IntroductiontoStatisticalPatternRecognition

DevijverandKittler

PatternRecognition:AStatisticalApproach

TouandGonzalez

PatternRecognitionPrinciples

YoungandCalvert

Classification,EstimationandPatternRecognition

Pavlidis

StructuralPatternRecognition

GonzalezandWintz

SyntacticPatternRecognition

Oja

SubspaceMethodsofPatternRecognition

Watanabe

PatternRecognition:HumanandMechanical

JainandDubes

AlgorithmsforClusteringData

(Downloadthebook)

Schalkoff

PatternRecognition:Statistic,StructuralandNeuralApproaches

CourseSchedule

Jan8

IntroductiontoPatternRecognition(Ch1)

StatisticalPatternRecognition:AReview

Lectureslides:

PatternRecognition

HW1

assigned

HW1Solutions

Jan10,15,17

StatisticalDecisionTheory(Ch2)

Jan15:

HW2

assigned;

HW1due

Lectureslides:

Chapter2

NotesonBayesClassification

AnIntroductiontoMatlab

.

Jan22

StatisticalDecisionTheory(Ch2)

Lectureslides:

Neyman-PearsonRule

LinearDiscriminantFunctions

Jan24,29

ParameterEstimation(Ch3)

BayesEstimatorformultivariateGaussiandensitywithunknowncovariancematrices

BayesEstimatorunderquadraticloss

Jan24:

HW3

assigned;

HW2due

Lectureslides:

Chapter3

Jan31

ParameterEstimation(Ch3)

CurseofDimensionality(Ch3)

CoinTossingExample

AProblemofDimensionality:ASimpleExample

Lectureslides:

CurseofDimensionality

Feb5,7

ComponentanalysisandDiscriminants(Ch3)

PrincipleComponentAnalysis(PCA)

Principalcomponentanalysisforfacerecognition.

Lectureslides:

ComponentAnalysis&Discriminants

Feb5:

HW4assigned;

HW3due

Feb12,14,19

NonparametricTechniques(Ch4)

Lectureslides:

NonparametricTechniques

ABranchandBoundAlgorithmforComputingk-NearestNeighbors

Feb19:

HW5assigned;

HW4due

Feb21

DecisionTrees(Ch8)

lectureslides

HierarchicalClassifierDesignUsingMutualInformation

-SethiandSarvarayudu

Feb26

MidTermExam

Feb28

ProjectDiscussion

Mar5,7

SPRINGBREAK

Mar12

ProjectProposalDue(2pages)

LinearDiscriminantfunctions(Ch5)

Lectureslides:

Lineardiscriminantfunctions

Mar14,19

LinearDiscriminantfunctions(Ch5)

SupportVectorMachines

Mar14:

HW6assigned;

HW5due

Mar21,26

NeuralNetworks(Ch6)

Lectureslides

Lectureslides-2

audiofile-1forLectureslides-2

audiofile-2forLectureslides-2

audiofile-3forLectureslides-2

Anoteoncomparingclassifiers

ATutorialonArtificialNeuralNetworks

Performanceevaluationofpatternclassifiersforhandwrittencharacterrecognition

Mar28,Apr2

ErrorRateEstimation,Bagging,Boosting(Ch9)

Mar28:

HW7assigned,

HW6due

Apr4

ClassifierCombination(Ch9)

Lectureslidesonclassifiercombination

CombinationofMultipleClassifiersUsingLocalAccuracyEstimates

byWoods,KegelmeyerandBowyer

Handwritingdigitsrecognitionbycombiningclassifiers

byvanBreukelen,Duin,TaxanddenHartog

Apr9

FeatureSelection

Lectureslidesonfeatureselection

BranchandBoundAlgorithmforFeatureSubsetSelection

byNarendraandFukunaga

FeatureSelection:Evaluation,Application,andSmallSamplePerformance

byJainandZongker

Apr11,16,18

UnsupervisedLearning,Clustering,andMultidimensionalScaling(Ch10)

April11:

HW7due

LectureSlides:Introductiontoclustering

LectureSlides:EMAlgorithm

LectureSlides:Largescaleclustering

TalkonLargeScaleClustering

DataClustering:50YearsBeyondK-means

(Download

PresentationSlides

here)

GraphTheoreticalMethodsforDetectingandDescribingGestaltClusters

byC.Zahn

ANonlinearMappingforDataStructureAnalysis

byJ.Sammon

RepresentationandRecognitionofHandwrittenDigitsUsingDeformableTemplates

byJainandZongker

Apr23

Semi-supervisedlearning

Semi-supervisedlearning

byXiaojinZhu

BoostCluster

byLiu,JinandJain

ConstrainedK-meansClusteringwithBackgroundKnowledge

byWagstaffetal.

Semi-supervisedclusteringbyseeding

byBasuetal.

Apr25

FinalProjectPresentation

FinalProjectReportDue

May1

FINALEXAM,7:45a.m.-9:45a.m.,

3400EB

Grading

Coursegradewillbeassignedbasedonscoresonsixhomeworkassignments,twoexamsandoneproject.Weightsforthesethreecomponentsareasfollows:HW(25%),MIDTERMEXAM(25%),FINALEXAM(25%),PROJECT(25%).Thecumulativescorewillbemappedtothelettergradeasfollows:90%orhigher:4.0;85%to90%:3.5;80%to85%:3.0andsoon.

Boththeexamswillbeclosedbook.MakeupexamswillbegivenONLYifproperlyjustified.

Homeworksolutionsmustbeturnedintheclassonthedatetheyaredue.Latehomeworksolutionswillnotbeaccepted.Homeworksolutionsshouldbeeithertypedorneatlyprinted.

PleaserefertoMSU'spolicyonthe

IntegrityofScholarship.

Allhomeworksolutionsmustreflectyourownwork.Failuretodosowillresultinagradeof0inthecourse.

CourseProject

Thepurposeoftheprojectistoenablethestudentstogetsomehands-onexperienceinthedesign,implementationandevaluationofpatternrecognitionalgorithms.Tofacilitatethecompletionoftheprojectinasemester,itisadvisedthatstudentsworkinteamsoftwo.Youareexpectedtoevaluatedifferentpreprocessing,featureextraction,andclassification(includingbaggingandboosting)approachestoachieveashighaccuracyaspossibleontheselectedclassificationtask.Thetaskfortheprojectisdescribed

here

.

Theprojectreportshouldclearlyexplaintheobjectiveofthestudy,somebackgroundwor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论