




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Introduction
Patternrecognitiontechniquesareusedtoautomaticallyclassifyphysicalobjects(handwrittencharacters,tissuesamples)orabstractmultidimensionalpatterns(n
pointsin
d
dimensions)intoknownorpossiblyunknowncategories.Anumberofcommercialpatternrecognitionsystemsareavailableforcharacterrecognition,handwritingrecognition,documentclassification,fingerprintclassification,speechandspeakerrecognition,whitebloodcell(leukocyte)classification,militarytargetrecognition,etc.Mostmachinevisionsystemsemploypatternrecognitiontechniquestoidentifyobjectsforsorting,inspection,andassembly.Thedesignofapatternrecognitionsystemrequiresthefollowingmodules:(i)sensing,(ii)featureextractionandselection,(iii)decisionmakingand(iv)performanceevaluation.Theavailabilityoflowcostandhighresolutionsensors(e.g.,digitalcameras,microphonesandscanners)anddatasharingovertheInternethaveresultedinhugerepositoriesofdigitizeddocuments(text,speech,imageandvideo).Needforefficientarchivingandretrievalofthisdatahasfosteredthedevelopmentofpatternrecognitionalgorithmsinnewapplicationdomains(e.g.,text,imageandvideoretrieval,bioinformatics,andfacerecognition).
Designofapatternrecognitionsystemtypicallyfollowsoneofthefollowingapproaches:(i)templatematching,(ii)statisticalmethods,(iii)syntacticmethodsand(iv)neuralnetworks.Thiscoursewillintroducethefundamentalsofstatisticalpatternrecognitionwithexamplesfromseveralapplicationareas.Techniquesforanalyzingmultidimensionaldataofvarioustypesandscalesalongwithalgorithmsforprojection,dimensionalityreduction,clusteringandclassificationofdatawillbeexplained.Thecoursewillpresentvariousapproachestoexploratorydataanalysisandclassifierdesignsostudentscanmakejudiciouschoiceswhenconfrontedwithrealpatternrecognitionproblems.Itisimportanttoemphasizethatthedesignofacompletepatternrecognitionsystemforaspecificapplicationdomain(e.g.,remotesensing)requiresdomainknowledge,whichisbeyondthescopeofthiscourse.StudentswilluseavailableMATLABsoftwarelibraryandimplementsomealgorithmsusingtheirchoiceofaprogramminglanguage.
Prerequisites
CSE232,MTH314,andSTT441,orequivalentcourses.
TextBook
Duda,HartandStork,PatternClassification,SecondEdition,Wiley,2001.
Youmayfindthe
erratalist
useful.
AnumberofbooksonpatternrecognitionhavebeenputontheAssignedReadingintheEngineeringLibrary.Inaddition,anumberofjournals,includingPatternRecognition,PatternRecognitionLetters,IEEETrans.PatternAnalysis&MachineIntelligence(PAMI),IEEETrans.Geoscience&RemoteSensing,IEEETrans.ImageProcessing,andIEEETrans.Speech,Audio,andLanguageProcessingroutinelypublishpapersonpatternrecognitiontheoryandapplications.
AssignedReading
FollowingbooksareonholdintheEngineeringlibraryforassignedreadingforCSE802.
TheodoridisandKoutroumbas
PatternRecognition
ChristopherBishop
PatternRecognitionandMachineLearning
Fukunaga
IntroductiontoStatisticalPatternRecognition
DevijverandKittler
PatternRecognition:AStatisticalApproach
TouandGonzalez
PatternRecognitionPrinciples
YoungandCalvert
Classification,EstimationandPatternRecognition
Pavlidis
StructuralPatternRecognition
GonzalezandWintz
SyntacticPatternRecognition
Oja
SubspaceMethodsofPatternRecognition
Watanabe
PatternRecognition:HumanandMechanical
JainandDubes
AlgorithmsforClusteringData
(Downloadthebook)
Schalkoff
PatternRecognition:Statistic,StructuralandNeuralApproaches
CourseSchedule
Jan8
IntroductiontoPatternRecognition(Ch1)
StatisticalPatternRecognition:AReview
Lectureslides:
PatternRecognition
HW1
assigned
HW1Solutions
Jan10,15,17
StatisticalDecisionTheory(Ch2)
Jan15:
HW2
assigned;
HW1due
Lectureslides:
Chapter2
NotesonBayesClassification
AnIntroductiontoMatlab
.
Jan22
StatisticalDecisionTheory(Ch2)
Lectureslides:
Neyman-PearsonRule
LinearDiscriminantFunctions
Jan24,29
ParameterEstimation(Ch3)
BayesEstimatorformultivariateGaussiandensitywithunknowncovariancematrices
BayesEstimatorunderquadraticloss
Jan24:
HW3
assigned;
HW2due
Lectureslides:
Chapter3
Jan31
ParameterEstimation(Ch3)
CurseofDimensionality(Ch3)
CoinTossingExample
AProblemofDimensionality:ASimpleExample
Lectureslides:
CurseofDimensionality
Feb5,7
ComponentanalysisandDiscriminants(Ch3)
PrincipleComponentAnalysis(PCA)
Principalcomponentanalysisforfacerecognition.
Lectureslides:
ComponentAnalysis&Discriminants
Feb5:
HW4assigned;
HW3due
Feb12,14,19
NonparametricTechniques(Ch4)
Lectureslides:
NonparametricTechniques
ABranchandBoundAlgorithmforComputingk-NearestNeighbors
Feb19:
HW5assigned;
HW4due
Feb21
DecisionTrees(Ch8)
lectureslides
HierarchicalClassifierDesignUsingMutualInformation
-SethiandSarvarayudu
Feb26
MidTermExam
Feb28
ProjectDiscussion
Mar5,7
SPRINGBREAK
Mar12
ProjectProposalDue(2pages)
LinearDiscriminantfunctions(Ch5)
Lectureslides:
Lineardiscriminantfunctions
Mar14,19
LinearDiscriminantfunctions(Ch5)
SupportVectorMachines
Mar14:
HW6assigned;
HW5due
Mar21,26
NeuralNetworks(Ch6)
Lectureslides
Lectureslides-2
audiofile-1forLectureslides-2
audiofile-2forLectureslides-2
audiofile-3forLectureslides-2
Anoteoncomparingclassifiers
ATutorialonArtificialNeuralNetworks
Performanceevaluationofpatternclassifiersforhandwrittencharacterrecognition
Mar28,Apr2
ErrorRateEstimation,Bagging,Boosting(Ch9)
Mar28:
HW7assigned,
HW6due
Apr4
ClassifierCombination(Ch9)
Lectureslidesonclassifiercombination
CombinationofMultipleClassifiersUsingLocalAccuracyEstimates
byWoods,KegelmeyerandBowyer
Handwritingdigitsrecognitionbycombiningclassifiers
byvanBreukelen,Duin,TaxanddenHartog
Apr9
FeatureSelection
Lectureslidesonfeatureselection
BranchandBoundAlgorithmforFeatureSubsetSelection
byNarendraandFukunaga
FeatureSelection:Evaluation,Application,andSmallSamplePerformance
byJainandZongker
Apr11,16,18
UnsupervisedLearning,Clustering,andMultidimensionalScaling(Ch10)
April11:
HW7due
LectureSlides:Introductiontoclustering
LectureSlides:EMAlgorithm
LectureSlides:Largescaleclustering
TalkonLargeScaleClustering
DataClustering:50YearsBeyondK-means
(Download
PresentationSlides
here)
GraphTheoreticalMethodsforDetectingandDescribingGestaltClusters
byC.Zahn
ANonlinearMappingforDataStructureAnalysis
byJ.Sammon
RepresentationandRecognitionofHandwrittenDigitsUsingDeformableTemplates
byJainandZongker
Apr23
Semi-supervisedlearning
Semi-supervisedlearning
byXiaojinZhu
BoostCluster
byLiu,JinandJain
ConstrainedK-meansClusteringwithBackgroundKnowledge
byWagstaffetal.
Semi-supervisedclusteringbyseeding
byBasuetal.
Apr25
FinalProjectPresentation
FinalProjectReportDue
May1
FINALEXAM,7:45a.m.-9:45a.m.,
3400EB
Grading
Coursegradewillbeassignedbasedonscoresonsixhomeworkassignments,twoexamsandoneproject.Weightsforthesethreecomponentsareasfollows:HW(25%),MIDTERMEXAM(25%),FINALEXAM(25%),PROJECT(25%).Thecumulativescorewillbemappedtothelettergradeasfollows:90%orhigher:4.0;85%to90%:3.5;80%to85%:3.0andsoon.
Boththeexamswillbeclosedbook.MakeupexamswillbegivenONLYifproperlyjustified.
Homeworksolutionsmustbeturnedintheclassonthedatetheyaredue.Latehomeworksolutionswillnotbeaccepted.Homeworksolutionsshouldbeeithertypedorneatlyprinted.
PleaserefertoMSU'spolicyonthe
IntegrityofScholarship.
Allhomeworksolutionsmustreflectyourownwork.Failuretodosowillresultinagradeof0inthecourse.
CourseProject
Thepurposeoftheprojectistoenablethestudentstogetsomehands-onexperienceinthedesign,implementationandevaluationofpatternrecognitionalgorithms.Tofacilitatethecompletionoftheprojectinasemester,itisadvisedthatstudentsworkinteamsoftwo.Youareexpectedtoevaluatedifferentpreprocessing,featureextraction,andclassification(includingbaggingandboosting)approachestoachieveashighaccuracyaspossibleontheselectedclassificationtask.Thetaskfortheprojectisdescribed
here
.
Theprojectreportshouldclearlyexplaintheobjectiveofthestudy,somebackgroundwor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络直播平台流量分成与电商平台合作合同
- 深海地质勘探专利许可与技术升级改造协议
- 电商企业进口退税担保及税务风险管理合同
- 古钱币鉴定设备租赁与品牌授权与售后服务协议
- 大数据技术入股合作框架协议
- 大数据股权收益权转让与数据分析合作协议
- 美团外卖平台餐饮商家线上订单处理协议
- 离婚协议在线电子签署及履行监督协议
- 工业自动化生产线传感器设备采购、安装及维护服务合同
- 介入治疗和护理
- GB/T 15768-1995电容式湿敏元件与湿度传感器总规范
- 2023年河北省对口升学计算机专业理论试题(附答案)2
- SH3503-2017石化交工资料石化封皮(电气安装工程交工资料)
- 建筑电气自动化论文(整理13篇)
- 印刷产品检验报告
- 雷霆传奇亲测-h5修改汇总
- 2023年版-肿瘤内科临床路径
- (完整版)水电工安全技术交底
- 《中国传统文化心理学》课件第五章 传统文化与心理治疗(修)
- 幼儿园各类档案借阅登记表
- 蒸汽疏水阀性能监测斯派莎克工程中国有限公司-Armstrong
评论
0/150
提交评论