2019届物理总复习 第九章 磁场章末热点集训测试题_第1页
2019届物理总复习 第九章 磁场章末热点集训测试题_第2页
2019届物理总复习 第九章 磁场章末热点集训测试题_第3页
2019届物理总复习 第九章 磁场章末热点集训测试题_第4页
2019届物理总复习 第九章 磁场章末热点集训测试题_第5页
已阅读5页,还剩1页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGEPAGE1学必求其心得,业必贵于专精第九章磁场章末热点集训导体在安培力作用下的受力分析如图所示,用两根轻细金属丝将质量为m、长为l的金属棒ab的两端悬挂在c、d两处,置于竖直向上的匀强磁场内.当棒中通以从a到b的电流I后,两悬线偏离竖直方向θ角处于平衡状态,则磁感应强度B为多大?为了使棒平衡在该位置,所需匀强磁场的磁感应强度B最小为多少?方向如何?[解析]画出从右侧逆着电流方向的侧视图,如图甲所示.金属棒在重力mg、悬线拉力FT、安培力F三个力作用下处于平衡状态,由平衡条件得F=mgtanθ又F=BIl,解得B=eq\f(mg,Il)tanθ要求所加匀强磁场的磁感应强度最小,应使棒在该位置平衡时所受的安培力最小.由于棒的重力恒定,悬线拉力的方向不变,由如图乙所示的力三角形可知,安培力的最小值为Fmin=mgsinθ即BminIl=mgsinθ解得Bmin=eq\f(mg,Il)sinθ由左手定则可知,所加磁场的方向应平行于悬线向上.[答案]eq\f(mg,Il)tanθeq\f(mg,Il)sinθ方向平行于悬线向上1.(多选)如图所示,质量为m,长为L的导体棒电阻为R,初始时静止于光滑的水平轨道上,电源电动势为E,内阻不计.匀强磁场的磁感应强度为B,其方向与轨道平面成θ角斜向上方且垂直于导体棒,开关闭合后导体棒开始运动,则()A.导体棒向左运动B.开关闭合瞬间导体棒MN所受安培力为eq\f(BEL,R)C.开关闭合瞬间导体棒MN所受安培力为eq\f(BELsinθ,R)D.开关闭合瞬间导体棒MN的加速度为eq\f(BELsinθ,mR)解析:选BD.磁场方向与导体棒垂直,导体棒所受安培力F=BIL=eq\f(BEL,R),方向为垂直于磁场方向与电流方向所确定的平面斜向下,其有水平向右的分量,将向右运动,故A、C错误,B正确.导体棒受到的合力F合=Fcos(90°-θ)=Fsinθ,由a=eq\f(F合,m)得a=eq\f(BELsinθ,mR),D正确.结合几何关系求解带电粒子在磁场中的运动一边长为a的正三角形ADC区域中有垂直该三角形平面向里的匀强磁场,在DC边的正下方有一系列质量为m、电荷量为q的带正电的粒子,以垂直于DC边的方向射入正三角形区域.已知所有粒子的速度均相同,经过一段时间后,所有的粒子都能离开磁场,其中垂直AD边离开磁场的粒子在磁场中运动的时间为t0.假设粒子的重力和粒子间的相互作用力可忽略.(1)求该区域中磁感应强度B的大小.(2)为了能有粒子从DC边离开磁场,则粒子射入磁场的最大速度为多大?(3)若粒子以(2)中的最大速度进入磁场,则粒子从正三角形边界AC、AD边射出的区域长度为多大?[解析](1)洛伦兹力提供向心力,有qvB=meq\f(v2,r)周期T=eq\f(2πr,v)=eq\f(2πm,qB)当粒子垂直AD边射出时,根据几何关系有圆心角为60°,则t0=eq\f(1,6)T解得B=eq\f(πm,3qt0)。(2)当轨迹圆与AC、AD都相切时,能有粒子从DC边射出,且速度为最大值,如图甲所示,设此时粒子的速度为v1,偏转半径为r1,则r1=eq\f(a,2)sin60°=eq\f(\r(3),4)a由qv1B=meq\f(veq\o\al(2,1),r1)得r1=eq\f(mv1,qB)解得v1=eq\f(\r(3)πa,12t0)所以粒子能从DC边离开磁场的最大入射速度v1=eq\f(\r(3)πa,12t0).(3)由(2)知,当轨迹圆与AC相切时,从AC边射出的粒子距C最远,故有粒子射出的范围为CE段,xCE=eq\f(a,2)cos60°=eq\f(a,4)当轨迹圆与AD边的交点F恰在圆心O正上方时,射出的粒子距D点最远,如图乙所示,故有粒子射出的范围为DF段xDF=eq\f(r1,sin60°)=eq\f(a,2).[答案]见解析2.如图所示,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q〉0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为eq\f(R,2).已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()A.eq\f(qBR,2m) B.eq\f(qBR,m)C.eq\f(3qBR,2m) D.eq\f(2qBR,m)解析:选B.作出粒子运动轨迹如图中实线所示.因P到ab距离为eq\f(R,2),可知α=30°.因粒子速度方向改变60°,可知转过的圆心角2θ=60°.由图中几何关系有eq\b\lc\(\rc\)(\a\vs4\al\co1(r+\f(R,2)))tanθ=Rcosα,解得r=R。再由Bqv=meq\f(v2,r)可得v=eq\f(qBR,m),故B正确.带电粒子在复合场中的运动如图所示的平行板之间存在着相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0。20T,方向垂直纸面向里,电场强度E1=1.0×105V/m,PQ为板间中线.紧靠平行板右侧边缘的xOy坐标系的第一象限内有一边界线AO,与y轴正方向间的夹角为45°,边界线的上方有垂直纸面向外的匀强磁场,磁感应强度B2=0。25T,边界线的下方有水平向右的匀强电场,电场强度E2=5.0×105V/m,在x轴上固定一水平的荧光屏.一束电荷量q=8。0×10-19C、质量m=8.0×10-26kg的带正电粒子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0。4m)的Q点垂直y轴射入磁场区,最后打到水平的荧光屏上的位置C(1)求粒子在平行板间运动的速度大小;(2)求粒子打到荧光屏上的位置C的横坐标;(3)现只改变AOy区域内磁场的磁感应强度的大小,使粒子都不能打到x轴上,磁感应强度的大小B2′应满足什么条件?[解析](1)设粒子的速度大小为v,粒子沿中线PQ做直线运动,则qE1=qvB1解得v=5.0×105(2)粒子在磁场中运动时,根据qvB2=meq\f(v2,r)可得运动半径r=0。2作出粒子的运动轨迹,交OA边界于N,如图甲所示,粒子垂直电场线进入电场,做类平抛运动.y=OO1=vt,s=eq\f(1,2)at2,a=eq\f(E2q,m)解得s=0。4粒子打到荧光屏上的位置C的横坐标为xC=0.6m(3)如图乙所示,由几何关系可知,粒子不能打到x轴上时最大轨迹半径为r′=eq\f(0.4,\r(2)+1)m根据洛伦兹力提供向心力有qvB0=meq\f(v2,r′)解得B0=0。3T若粒子都不能打到x轴上,则磁感应强度大小B2′≥0.3T.[答案](1)5。0×105m/s(2)0.6m(3)B3。(2018·河南十校联考)如图所示,在x轴的上方有沿y轴负方向的匀强电场,电场强度为E,在x轴的下方等腰三角形CDM区域内有垂直于xOy平面由内向外的匀强磁场,磁感应强度为B,其中C、D在x轴上,它们到原点O的距离均为a,θ=45°.现将一质量为m、电荷量为q的带正电粒子,从y轴上的P点由静止释放,设P点到O点的距离为h,不计重力作用与空气阻力的影响.下列说法正确的是()A.若h=eq\f(B2a2q,2mE),则粒子垂直CM射出磁场B.若h=eq\f(B2a2q,2mE),则粒子平行于x轴射出磁场C.若h=eq\f(B2a2q,8mE),则粒子垂直CM射出磁场D.若h=eq\f(B2a2q,8mE),则粒子平行于x轴射出磁场解析:选AD.粒子从P点到O点经电场加速,Eqh=eq\f(1,2)mv2,粒子进入磁场后做匀速圆周运动,Bqv=meq\f(v2,r).(1)若粒子恰好垂直CM射出磁场时,其圆心恰好在C点,如图甲所示,其半径为r=a.由以上两式可求得P到O的距离h=eq\f(B2a2q,2mE),A选项正确.甲乙(2)若粒子进入磁场后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论