2022-2023学年浙江省杭州市杭州二中高一数学第二学期期末检测试题含解析_第1页
2022-2023学年浙江省杭州市杭州二中高一数学第二学期期末检测试题含解析_第2页
2022-2023学年浙江省杭州市杭州二中高一数学第二学期期末检测试题含解析_第3页
2022-2023学年浙江省杭州市杭州二中高一数学第二学期期末检测试题含解析_第4页
2022-2023学年浙江省杭州市杭州二中高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知之间的几组数据如下表:

1

2

3

4

5

6

0

2

1

3

3

4

假设根据上表数据所得线性回归直线方程为中的前两组数据和求得的直线方程为则以下结论正确的是()A. B. C. D.2.在△ABC中,,则△ABC为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形3.函数则=()A. B. C.2 D.04.正方体中,直线与所成角的余弦值为()A. B. C. D.5.设是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,,则B.若,,则C.若,,则是异面直线D.若,,,则6.已知数列满足,为其前项和,则不等式的的最大值为()A.7 B.8 C.9 D.107.函数的零点所在的一个区间是().A. B. C. D.8.已知等比数列的前n项和为,若,,,则()A. B. C. D.9.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.110.的值等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点的个数是______.12.已知,,,,则________.13.若实数满足不等式组则的最小值是_____.14.在等比数列中,若,则等于__________.15.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________16.若函数的反函数的图象过点,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,已知,是边上的一点,,,.(1)求的大小;(2)求的长.18.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.19.已知函数的定义域为R(1)求的取值范围;(2)若函数的最小值为,解关于的不等式。20.已知函数.(1)求函数的最小正周期;(2)将函数的图象向右平移个单位得到函数的图象,若,求的值域.21.在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,,.(1)证明:平面;(2)求直线与平面所成角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′2、C【解析】

直接利用正弦定理余弦定理化简得到,即得解.【详解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案为:C【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理水平.3、B【解析】

先求得的值,进而求得的值.【详解】依题意,,故选B.【点睛】本小题主要考查分段函数求值,考查运算求解能力,属于基础题.4、C【解析】

作出相关图形,通过平行将异面直线所成角转化为共面直线所成角.【详解】作出相关图形,由于,所以直线与所成角即为直线与所成角,由于为等边三角形,于是所成角余弦值为,故答案选C.【点睛】本题主要考查异面直线所成角的余弦值,难度不大.5、A【解析】

利用线面垂直的判定,线面平行的判定,线线的位置关系及面面平行的性质逐一判断即可.【详解】对于A,垂直于同一个平面的两条直线互相平行,故A正确.对于B,若,,则或,故B错误.对于C,若,,则位置关系为平行或相交或异面,故C错误.对于D,若,,,则位置关系为平行或异面,故D错误.故选:A【点睛】本题主要考查了线面垂直的性质,线面平行的判定和面面平行的性质,属于简单题.6、B【解析】

由题意,整理得出是一个首项为12,公比为的等比数列,从而求出,再求出其前项和,然后再求出的表达式,再代入数验证出的最大值即可.【详解】由可得,即,所以数列是等比数列,又,所以,故,解得,(),所以的最大值为8.选B.【点睛】本题考查数列的递推式以及数列求和的方法分组求和,属于数列中的综合题,考查了转化的思想,构造的意识,本题难度较大,思维能力要求高.7、B【解析】

判断函数的单调性,利用f(﹣1)与f(1)函数值的大小,通过零点存在性定理判断即可【详解】函数f(x)=2x+3x是增函数,f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零点存在性定理可知:函数f(x)=2x+3x的零点所在的一个区间(﹣1,1).故选:B.【点睛】本题考查零点存在性定理的应用,考查计算能力,注意函数的单调性的判断.8、D【解析】

根据等比数列前n项和的性质可知、、成等比数列,即可得关于的等式,化简即可得解.【详解】等比数列的前n项和为,若,,根据等比数列前n项和性质可知,、、满足:化简可得故选:D【点睛】本题考查了等比数列前n项和的性质及简单应用,属于基础题.9、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m10、D【解析】

利用诱导公式先化简,再利用差角的余弦公式化简得解.【详解】由题得原式=.故选D【点睛】本题主要考查诱导公式和差角的余弦公式化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

在同一直角坐标系内画出函数与函数的图象,利用数形结合思想可得出结论.【详解】在同一直角坐标系内画出函数与函数的图象如下图所示:由图象可知,函数与函数的图象的交点个数为,因此,函数的零点个数为.故答案为:.【点睛】本题考查函数零点个数的判断,在判断函数的零点个数时,一般转化为对应方程的根,或转化为两个函数图象的交点个数,考查数形结合思想的应用,属于中等题.12、【解析】

根据已知角的范围分别求出,,利用整体代换即可求解.【详解】,,,所以,,,,所以,=故答案为:【点睛】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.13、4【解析】试题分析:由于根据题意x,y满足的关系式,作出可行域,当目标函数z=2x+3y在边界点(2,0)处取到最小值z=2×2+3×0=4,故答案为4.考点:本试题主要考查了线性规划的最优解的运用.点评:解决该试题的关键是解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14、【解析】

由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.15、2019【解析】

根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.16、【解析】

由反函数的性质可得的图象过,将代入,即可得结果.【详解】的反函数的图象过点,的图象过,故答案为.【点睛】本题主要考查反函数的基本性质,意在考查对基础知识掌握的熟练程度,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)在中,由余弦定理得,最后根据的值及,即可得到的值;(2)在中,由正弦定理得到,从而代入数据进行运算即可得到的长.试题解析:(1)在中,,由余弦定理可得又因为,所以(2)在中,由正弦定理可得所以.考点:1.正弦定理;2.余弦定理;3.解斜三角形.18、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.【详解】解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,所以该区中随机抽取一人,估计其年龄不小于60的概率为.(Ⅱ)年龄在的累计频率为,,所以估计中位数为.(Ⅲ)平均年龄为【点睛】本小题主要考查频率分布直方图的识别与应用,考查频率分布直方图估计中位数和平均数,考查运算求解能力,属于中档题.19、(1);(2)【解析】

(1)由的定义域为可知,,恒成立,即可求出的范围.(2)结合的范围,运用配方法,即可求出的值,进而求解不等式.【详解】(1)由已知可得对,恒成立,当时,恒成立。当时,则有,解得,综上可知,的取值范围是[0,1](2)由(1)可知的取值范围是[0,1]显然,当时,,不符合.所以,,,由题意得,,,可化为,解得,不等式的解集为。【点睛】主要考查了一元二次不等式在上恒成立求参数范围,配方法以及一元二次不等式求解问题,属于中档题.对任意实数恒成立的条件是;而任意实数恒成立的条件是.20、(1);(2).【解析】

(1)将已知函数转化为,结合周期的公式,即可求解;(2)利用三角函数的图象变换,求得,再结合三角函数的性质,即求解.【详解】(1)因为,所以的最小正周期;(2)若将函数的图象向右平移个单位,得到函数的图象对应的解析式为,由知,,所以当即时,取得最小值;当即时,取得最大值1,因此的值域为.【点睛】本题主要考查了三角函数的恒等变换,以及正项型函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1)见解析(2)【解析】

(1)取中点,连接,,构造平行四边形,由线线平行得到线面平行;(2)根据线面角的定义作出线面角,在直角三角形中求出数值.【详解】(1)证明:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论