2022-2023学年浙江省温州树人中学高一数学第二学期期末考试试题含解析_第1页
2022-2023学年浙江省温州树人中学高一数学第二学期期末考试试题含解析_第2页
2022-2023学年浙江省温州树人中学高一数学第二学期期末考试试题含解析_第3页
2022-2023学年浙江省温州树人中学高一数学第二学期期末考试试题含解析_第4页
2022-2023学年浙江省温州树人中学高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知是边上一点,,,则等于()A. B. C. D.2.各项均为实数的等比数列{an}前n项之和记为,若,,则等于A.150 B.-200 C.150或-200 D.-50或4003.某校高一甲、乙两位同学的九科成绩如茎叶图所示,则下列说法正确的是()A.甲、乙两人的各科平均分不同 B.甲、乙两人的中位数相同C.甲各科成绩比乙各科成绩稳定 D.甲的众数是83,乙的众数为874.为了得到函数y=sin(2x+)的图象,只需将函数y=sin2x图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度5.已知一个扇形的圆心角为,半径为1.则它的弧长为()A. B. C. D.6.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形7.直线的斜率是()A. B.13 C.0 D.8.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22A.29 B.13 C.49.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.10.若数列满足(,为常数),则称数列为“调和数列”.已知数列为调和数列,且,则的最大值是()A.50 B.100 C.150 D.200二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为_____________.12.已知数列满足:(),设的前项和为,则______;13.函数的最小值是.14.若,点的坐标为,则点的坐标为.15.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______16.在等比数列中,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(1)求数列,的通项公式;(2)当时,记,求数列的前项和.18.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.19.已知锐角三个内角、、的对边分别是,且.(1)求A的大小;(2)若,求的面积.20.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.21.已知圆心在直线上的圆C经过点,且与直线相切.(1)求过点P且被圆C截得的弦长等于4的直线方程;(2)过点P作两条相异的直线分别与圆C交于A,B,若直线PA,PB的倾斜角互补,试判断直线AB与OP的位置关系(O为坐标原点),并证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

利用向量的减法将3,进行分解,然后根据条件,进行对比即可得到结论【详解】∵3,∴33,即43,则,∵λ,∴λ,故选A.【点睛】本题主要考查向量的基本定理的应用,根据向量的减法法则进行分解是解决本题的关键.2、A【解析】

根据等比数列的前n项和公式化简S10=10,S30=70,分别求得关于q的两个关系式,可求得公比q的10次方的值,再利用前n项和公式计算S40即可.【详解】因为{an}是等比数列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案选A.【点睛】此题考查学生灵活运用等比数列的前n项和的公式化简求值,是一道综合题,有一定的运算技巧,需学生在练习中慢慢培养.3、C【解析】

分别计算出甲、乙两位同学成绩的平均分、中位数、众数,由此确定正确选项.【详解】甲的平均分为,乙的平均分,两人平均分相同,故A选项错误.甲的中位数为,乙的中位数为,两人中位数不相同,故B选项错误.甲的众数是,乙的众数是,故D选项错误.所以正确的答案为C.由茎叶图可知,甲的数据比较集中,乙的数据比较分散,所以甲比较稳定.(因为方差运算量特别大,故不需要计算出方差.)故选:C【点睛】本小题主要考查根据茎叶图比较平均数、中位数、众数、方差,属于基础题.4、A【解析】

由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【详解】∵,故要得到的图象,只需将函数y=sin2x,x∈R的图象向左平移个单位长度即可,故选:A.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.5、C【解析】

直接利用扇形弧长公式求解即可得到结果.【详解】由扇形弧长公式得:本题正确选项:【点睛】本题考查扇形弧长公式的应用,属于基础题.6、A【解析】

在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.7、A【解析】

由题得即得直线的斜率得解.【详解】由题得,所以直线的斜率为.故选:A【点睛】本题主要考查直线的斜率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、C【解析】

求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解.【详解】连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),则有8=x(6-x),得x=2,所以AB=2, BC=4,由此可得图中阴影部分的面积等于π×3【点睛】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长.9、D【解析】

求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.10、B【解析】

根据调和数列定义知为等差数列,再由前20项的和为200知,最后根据基本不等式可求出的最大值。【详解】因为数列为调和数列,所以,即为等差数列又,又大于0所以【点睛】本题考查了新定义“调和数列”的性质、等差数列的性质及其前n项公式、基本不等式的性质,属于难题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

分析函数在区间上的单调性,由此可求出该函数在区间上的值域.【详解】由于函数和函数在区间上均为增函数,所以,函数在区间上也为增函数,且,,当时,,因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,解题的关键就是判断出函数的单调性,考查分析问题和解决问题的能力,属于中等题.12、130【解析】

先利用递推公式计算出的通项公式,然后利用错位相减法可求得的表达式,即可完成的求解.【详解】因为,所以,所以,所以,又因为,不符合时的通项公式,所以,当时,,所以,所以,所以,所以.故答案为:.【点睛】本题考查根据数列的递推公式求通项公式以及错位相减法的使用,难度一般.利用递推公式求解数列的通项公式时,若出现了的形式,一定要注意标注,同时要验证是否满足的情况,这决定了通项公式是否需要分段去写.13、3【解析】试题分析:考点:基本不等式.14、【解析】试题分析:设,则有,所以,解得,所以.考点:平面向量的坐标运算.15、【解析】试题分析:∵从7人中选2人共有C72=21种选法,从4个男生中选2人共有C42=6种选法∴没有女生的概率是=,∴至少有1名女生当选的概率1-=.考点:本题主要考查古典概型及其概率计算公式.点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.16、【解析】

根据等比数列中,,得到公比,再写出和,从而得到.【详解】因为为等比数列,,,所以,所以,,所以.故答案为:.【点睛】本题考查等比数列通项公式中的基本量计算,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知cn,写出Tn、Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.【详解】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n﹣1,bn=2n﹣1;当时,an(2n+79),bn=9•;(2)当d>1时,由(1)知an=2n﹣1,bn=2n﹣1,∴cn,∴Tn=1+3•5•7•9•(2n﹣1)•,∴Tn=1•3•5•7•(2n﹣3)•(2n﹣1)•,∴Tn=2(2n﹣1)•3,∴Tn=6.【点睛】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.18、(1)见解析;(2)0.【解析】

(1)药物在白鼠血液内的浓度y与时间t的关系为:当a=1时,y=y1+y2;①当0<t<1时,y=﹣t4=﹣()2,所以ymax=f();②当1≤t≤3时,∵,所以ymax=7﹣2(当t时取到),因为,故ymax=f().(2)由题意y①⇒⇒,又0<t<1,得出a≤1;②⇒⇒由于1≤t≤3得到,令,则,所以,综上得到以0.19、(1)(2)【解析】

(1)根据正弦定理把边化为对角的正弦求解;(2)根据余弦定理和已知求出,再根据面积公式求解.【详解】解:(1)由正弦定理得∵,∴,又∵∴(2)由余弦定理得所以即∴∴的面积为【点睛】本题考查解三角形.常用方法有正弦定理,余弦定理,三角形面积公式;注意增根的排除.20、(1);(2)【解析】

(1)在中,先得到再利用正弦定理得到.(2)在中,计算,由余弦定理得到,再用余弦定理得到.【详解】(1)在中,,则,又由正弦定理,得(2)在中,,则,又即是等腰三角形,得.由余弦定理,得所以.在中,由余弦定理,得所以.【点睛】本题考查了正弦定理和余弦定理,意在考查学生利用正余弦定理解决问题的能力.21、(1)或;(2)平行【解析】

(1)设出圆的圆心为,半径为,可得圆的标准方程,根据题意可得,解出即可得出圆的方程,讨论过点P的直线斜率存在与否,再根据点到直线的距离公式即可求解.(2)由题意知,直线PA,PB的倾斜角互补,分类讨论两直线的斜率存在与否,当斜率均存在时,则直线PA的方程为:,直线PB的方程为:,分别与圆C联立可得,利用斜率的计算公式与作比较即可.【详解】(1)根据题意,不妨设圆C的圆心为,半径为,则圆C,由圆C经过点,且与直线相切,则,解得,故圆C的方程为:,所以点在圆上,过点P且被圆C截得的弦长等于4的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论