版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线过,,则该直线的斜率为A.2 B.3 C.4 D.52.在△ABC中,角所对的边分别为,且则最大角为()A. B. C. D.3.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形4.已知某圆柱的底面周长为12,高为2,矩形是该圆柱的轴截面,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C.3 D.25.如图,直角的斜边长为2,,且点分别在轴,轴正半轴上滑动,点在线段的右上方.设,(),记,,分别考察的所有运算结果,则()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值6.在中,,,则的外接圆半径为()A.1 B.2 C. D.7.若,,,,则等于()A. B. C. D.8.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.9.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.10.已知,,当时,不等式恒成立,则的取值范围是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则________.12.记等差数列的前项和为,若,则________.13.把函数的图象向左平移个单位长度,所得图象正好关于原点对称,则的最小值为________.14.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.15.圆的一条经过点的切线方程为______.16.在中,,,,点在线段上,若,则的面积是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量、满足,,.(1)求的值;(2)若,求实数的值.18.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.19.已知等差数列满足:,.(1)求数列的通项公式;(2)求数列的前n项和为.20.已知,函数.(1)当时,解不等式;(2)若对,不等式恒成立,求a的取值范围.21.已知等比数列满足,,等差数列满足,,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由直线的斜率公式,即可求解,得到答案.【详解】由题意,直线过点,,由斜率公式,可得斜率,故选A.【点睛】本题主要考查了斜率公式的应用,其中解答中熟记直线的斜率公式是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】
根据正弦定理可得三边的比例关系;由大边对大角可知最大,利用余弦定理求得余弦值,从而求得角的大小.【详解】由正弦定理可得:设,,最大为最大角本题正确选项:【点睛】本题考查正弦定理、余弦定理的应用,涉及到三角形中大边对大角的关系,属于基础题.3、A【解析】
将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【点睛】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.4、A【解析】
由圆柱的侧面展开图是矩形,利用勾股定理求解.【详解】圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从到的最短路径为线段,.故选:A.【点睛】本题考查圆柱侧面展开图中的最短距离问题,是基础题.5、B【解析】
设,用表示出,根据的取值范围,利用三角函数恒等变换化简,进而求得最值的情况.【详解】依题意,所以.设,则,所以,,所以,当时,取得最大值为.,所以,所以,当时,有最小值为.故选B.【点睛】本小题主要考查平面向量数量积的坐标运算,考查三角函数化简求值,考查化归与转化的数学思想方法,属于难题.6、A【解析】
由同角三角函数关系式,先求得.再结合正弦定理即可求得的外接圆半径.【详解】中,由同角三角函数关系式可得由正弦定理可得所以,即的外接圆半径为1故选:A【点睛】本题考查了同角三角函数关系式的应用,正弦定理求三角形外接圆半径,属于基础题.7、C【解析】
利用同角三角函数的基本关系求出与,然后利用两角差的余弦公式求出值.【详解】,,则,,则,所以,,因此,,故选C.【点睛】本题考查利用两角和的余弦公式求值,解决这类求值问题需要注意以下两点:①利用同角三角平方关系求值时,要求对象角的范围,确定所求值的正负;②利用已知角来配凑未知角,然后利用合适的公式求解.8、C【解析】
根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题9、C【解析】
计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.10、B【解析】
根据为定值,那么乘以后值不变,由基本不等式可消去x,y后,对得到的不等式因式分解,即可解得m的值.【详解】因为,,,所以.因为不等式恒成立,所以,整理得,解得,即.【点睛】本题考查基本不等式,由为定值和已知不等式相乘来构造基本不等式,最后含有根式的因式分解也是解题关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意得出,结合诱导公式,二倍角公式求解即可.【详解】,则角的终边可能在第一、二象限由图可知,无论角的终边在第一象限还是第二象限,都有故答案为:【点睛】本题主要考查了利用二倍角的余弦公式以及诱导公式化简求值,属于基础题.12、10【解析】
由等差数列求和的性质可得,求得,再利用性质可得结果.【详解】因为,所以,所以,故故答案为10【点睛】本题考查了等差数列的性质,熟悉其性质是解题的关键,属于基础题.13、【解析】
根据条件先求出平移后的函数表达式为,令即可得解.【详解】由题意可得平移后的函数表达式为,图象正好关于原点对称,即,又,的最小值为.故答案为:.【点睛】本题考查了函数图像的平移以及三角函数的图像与性质,属于基础题.14、【解析】
设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.15、【解析】
根据题意,设为,设过点圆的切线为,分析可得在圆上,求出直线的斜率,分析可得直线的斜率,由直线的点斜式方程计算可得答案.【详解】根据题意,设为,设过点圆的切线为,圆的方程为,则点在圆上,则,则直线的斜率,则直线的方程为,变形可得,故答案为.【点睛】本题考查圆的切线方程,注意分析点与圆的位置关系.16、【解析】
过作于,设,运用勾股定理和三角形的面积公式,计算可得所求值.【详解】过作于,设,,,,又,可得,即有,可得的面积为.故答案为.【点睛】本题考查解三角形,考查勾股定理的运用,以及三角形的面积公式,考查化简运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)将等式两边平方,利用平面向量数量积的运算律可计算出的值;(2)由转化为,然后利用平面向量数量积的运算律可求出实数的值.【详解】(1)在等式两边平方得,即,即,解得;(2),,即,解得.【点睛】本题考查利用平面向量的模求数量积,同时也考查了利用平面向量数量积来处理平面向量垂直的问题,考查化归与转化数学思想,属于基础题.18、(1)an=2×【解析】试题分析:(1)设出等比数列{an}的公比q,利用条件a1=4,a3﹣a4(4)数列{an+bn}是由一个等差数列和一个等比数列对应项相加得来的,所以可以采用拆项分组的方法,转化为等差数列、等比数列的前n项和问题来解决.试题解析:解:(1)设数列{an}的公比为q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合题意,舍去,故q=3.∴an=4×3n﹣1;(4)∵数列{bn}是首项b1=1,公差d=4的等差数列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考点:等差数列与等比数列.19、(1)(2)【解析】
(1)由等差数列的性质,求得,进而得到,即可求得数列的通项公式;(2)由(1)可得,列用裂项法,即可求解数列的前项和.【详解】(1)由等差数列的性质,可得,所以,又由,所以数列的通项公式.(2)由(1)可得,所以.【点睛】本题主要考查等差数列的通项公式及求和公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,能较好的考查考生的逻辑思维能力及基本计算能力,属于基础题.20、(1)或;(2)或.【解析】
(1)代入,把项都移到左边,合并同类项再因式分解,即可得到本题答案;(2)等价于,考虑的图象不在图象的上方,利用数形结合的方法,即可得到本题答案.【详解】(1)当时,由得,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工绩效计划培训课件
- 2025年水处理阻垢缓蚀剂HEDP项目合作计划书
- 气道护理的科研进展
- 护理专业就业现状分析
- 肾脏疾病护理指南
- 护理规培:基础理论精讲
- EMR术后早期活动的好处
- 护理专业领导力培养
- 护理翻转课堂:跨文化交流与沟通
- 跌倒风险识别与评估
- 湖南储备粮代储合同
- 框架玻璃幕墙拆除方案
- NPI工程师年终个人工作总结述职报告
- 鹤岗矿业集团峻德煤矿24Mt-a新井设计-课程设计设计
- 2025年12月保安公司年终工作总结模版(三篇)
- 机械制造基础-002-国开机考复习资料
- 文旅场所安全培训课件
- 《金属材料与热处理(第八版)》- 课件 绪论
- 计算机网络技术与应用(第4版)中职全套教学课件
- 职业技术学校《电子商务客户服户》课程标准
- DL∕T 1624-2016 电力系统厂站和主设备命名规范
评论
0/150
提交评论