




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人2.一个人连续射击三次,则事件“至少击中两次”的对立事件是()A.恰有一次击中 B.三次都没击中C.三次都击中 D.至多击中一次3.已知半圆C:(),A、B分别为半圆C与x轴的左、右交点,直线m过点B且与x轴垂直,点P在直线m上,纵坐标为t,若在半圆C上存在点Q使,则t的取值范围是()A. B.C. D.4.已知扇形圆心角为,面积为,则扇形的弧长等于()A. B. C. D.5.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.56.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A. B. C. D.7.已知函数图象的一条对称轴是,则的值为()A.5 B. C.3 D.8.高一数学兴趣小组共有5人,编号为.若从中任选3人参加数学竞赛,则选出的参赛选手的编号相连的概率为()A. B. C. D.9.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.10.己知函数的最小值为,最大值为,若,则数列是()A.公差不为0的等差数列 B.公比不为1的等比数列C.常数数列 D.以上都不对二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数的图象经过点,那么实数的值等于____________.12.已知数列满足:,,则数列的前项的和_______.13.已知等差数列的公差为2,若成等比数列,则________.14.在中,角,,的对边分别为,,,若,则________.15.已知且,则________16.若,则=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某小区有一块半径为米的半圆形空地,开发商计划在该空地上征地建一个矩形的花坛和一个等腰三角形的水池EDC,其中为圆心,在圆的直径上,在半圆周上.(1)设,征地面积为,求的表达式,并写出定义域;(2)当满足取得最大值时,建造效果最美观.试求的最大值,以及相应角的值.18.已知α为锐角,且tanα=(I)求tanα+(II)求5sin19.已知为等差数列,且,.(1)求的通项公式;(2)若等比数列满足,,求数列的前项和公式.20.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.21.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.2、D【解析】
根据判断的原则:“至少有个”的对立是“至多有个”.【详解】根据判断的原则:“至少击中两次”的对立事件是“至多击中一次”,故选D.【点睛】至多至少的对立事件问题,可以采用集合的补集思想进行转化.如“至少有个”则对应“”,其补集应为“”.3、A【解析】
根据题意,设PQ与x轴交于点T,分析可得在Rt△PBT中,|BT||PB||t|,分p在x轴上方、下方和x轴上三种情况讨论,分析|BT|的最值,即可得t的范围,综合可得答案.【详解】根据题意,设PQ与x轴交于点T,则|PB|=|t|,由于BP与x轴垂直,且∠BPQ,则在Rt△PBT中,|BT||PB||t|,当P在x轴上方时,PT与半圆有公共点Q,PT与半圆相切时,|BT|有最大值3,此时t有最大值,当P在x轴下方时,当Q与A重合时,|BT|有最大值2,|t|有最大值,则t取得最小值,t=0时,P与B重合,不符合题意,则t的取值范围为[,0)];故选A.【点睛】本题考查直线与圆方程的应用,涉及直线与圆的位置关系,属于中档题.4、C【解析】
根据扇形面积公式得到半径,再计算扇形弧长.【详解】扇形弧长故答案选C【点睛】本题考查了扇形的面积和弧长公式,解出扇形半径是解题的关键,意在考查学生的计算能力.5、B【解析】
根据三角函数的定义建立方程关系即可.【详解】因为角的终边经过点且,所以则解得【点睛】本题主要考查三角函数的定义的应用,应注意求出的b为正值.6、C【解析】
试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.7、D【解析】
化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.【详解】函数f(x)=acosx+sinxsin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.8、A【解析】
先考虑从个人中选取个人参加数学竞赛的基本事件总数,再分析选出的参赛选手的编号相连的事件数,根据古典概型的概率计算得到结果.【详解】因为从个人中选取个人参加数学竞赛的基本事件有:,共种,又因为选出的参赛选手的编号相连的事件有:,共种,所以目标事件的概率为.故选:A.【点睛】本题考查古典概型的简单应用,难度较易.求解古典概型问题的常规思路:先计算出基本事件的总数,然后计算出目标事件的个数,目标事件的个数比上基本事件的总数即可计算出对应的概率.9、C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.10、C【解析】
先根据判别式法求出的取值范围,进而求得和的关系,再展开算出分析即可.【详解】设,则,因为,故,故二次函数,整理得,故与为方程的两根,所以为常数.故选C.【点睛】本题主要考查判别式法求分式函数范围的问题,再根据二次函数的韦达定理进行求解分析即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据原函数与其反函数的图象关于直线对称,可得函数的图象经过点,由此列等式可得结果.【详解】因为函数的反函数的图象经过点,所以函数的图象经过点,所以,即,解得.故答案为:【点睛】本题考查了原函数与其反函数的图象的对称性,属于基础题.12、【解析】
通过令求出数列的前几项,猜测是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.然后根据递推式给予证明,最后由等比数列的前项和公式计算.【详解】当时,,,,,,,当时,,,,,,,当时,,,,,,,猜测,是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.设中,即,∴,由于都是正整数,所以,所以数列中第项开始大于3,前项是以为首项,2为公比的等比数列.,所以是以为周期的周期数列,所以.故答案为:.【点睛】本题考查等比数列的前项和,考查数列的周期性.解题关键是确定数列的周期性.方法采取的是从特殊到一般,猜想与证明.13、【解析】
利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..14、【解析】
利用余弦定理与不等式结合的思想求解,,的关系.即可求解的值.【详解】解:根据①余弦定理②由①②可得:化简:,,,,,,此时,故得,即,.故答案为:.【点睛】本题主要考查了存在性思想,余弦定理与不等式结合的思想,界限的利用.属于中档题.15、【解析】
根据数列极限的方法求解即可.【详解】由题,故.又.故.故.故答案为:【点睛】本题主要考查了数列极限的问题,属于基础题型.16、【解析】.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值为,此时【解析】
(1)连接,在中,求出,进而求出面积以及角的范围;(2)令,再求出的范围,转化为二次函数即可求出最大值,以及相应角的值.【详解】(1)连接,在中,,(2),令,因为,所以,所以因为在上单调递增,所以时有最大值为,此时【点睛】本题主要考查三角函数与实际应用相结合,最终转化为二次函数进行求解,这类问题的特点是通过现实生活的事例考查解决问题的能力、仔细理解题,才能将实际问题转化为数学模型进行解答.18、(I)tanα+π【解析】试题分析:(1)根据两角和差的正切公式,将式子展开,根据题干中的条件代入即可;(2)这是其次式的考查,上下同除以cosα(I)tanα+(II)因为tanα=1519、(1);(2).【解析】
本试题主要是考查了等差数列的通项公式的求解和数列的前n项和的综合运用.、(1)设公差为,由已知得解得,(2),等比数列的公比利用公式得到和.20、(Ⅰ)见解析(Ⅱ)【解析】试题分析:(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.3分因为DF⊂平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱锥C﹣A1DE的体积为:==1.12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积21、(1)见解析;(2).【解析】
(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 过期肉产品采购合同协议
- 转包茶叶山合同协议
- 超市采购中标合同协议
- 供应合同协议书
- 防水施工合同协议书
- 设备外协安装合同协议
- 沙场劳动协议书
- 车间物料员员试题及答案
- 2025年分布式能源交易市场与能源互联网产业融合发展研究报告
- 纺织品设计师考试案例研究试题及答案
- 设备点检基准书
- 园林植物保护第二章共36张课件
- 公司钥匙移交单
- 2023年广东省高中学生化学竞赛试题与标准答案正式题(word可编辑版)
- DB63-T 1110-2020 青海省绿色建筑评价标准-(高清现行)
- 五年级心理健康教育课件-欣赏自己 全国通用(共19张PPT)
- JJF1637-2017 廉金属热电偶校准规范-(高清现行)
- DBJ04∕T 416-2020 农村宅基地自建住房技术指南(标准)
- 归档范围和保管期限(8号令)讲解课件
- 瓦斯抽放泵培训PPT课件
- 疑似预防接种异常反应(AEFI)监测与处理PPT课件
评论
0/150
提交评论