版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
传递函数与干预变量第1页,共96页,2023年,2月20日,星期三主要内容和要求
本章讨论多元的时间建模的相关问题。主要内容和要求:
1.定义传递函数模型的形式;
2.研究传递函数模型和脉冲响应函数的基本特征和性质,以及传递函数模型的稳定性;
3.介绍传递函数模型的识别、估计和诊断校验。
4.干预变量模型识别、估计和诊断校验。要求学生掌握有关传递函数模型的理论、脉冲响应函数与互相关函数的关系。传递函数建模过程和干预变量模型建模过程。2第2页,共96页,2023年,2月20日,星期三在前几章,我们讨论了单变量时间序列分析的建模、估计和诊断有关的问题。本章与前面几章不同的是,所涉及的变量在两个以上。实际上在很多场合,时间序列当期的表现,不仅受自己过去的影响,还与另一个或者多个时间序列相关联。例如销售变量可能与广告支出有关,每天用电支出可能与一定的天气变量,比如室外最高气温和相对湿度的序列有关。传递函数模型是分析一个输出变量与一个或多个输入变量有关的动态模型的一种方法。第一节传递函数模型的基本概念3第3页,共96页,2023年,2月20日,星期三一、模型的形式
设表示某种商品在一段时间的销售额Yt,由于经济时间序列通常的有记忆性,可以用一个ARMA模型来描述其变化规律,假定其变化规律的表达式为
如果我们考虑广告费,广告费对销售额的影响不仅有即期影响,还具有一定的滞后效应,假定其滞后的影响是一期,那么在式中就应加入广告费的滞后一期值和即期值。4第4页,共96页,2023年,2月20日,星期三
如果广告费的滞后一期值对销售额的影响效用是0.60,即期影响是0.55,则这个简单的输出和输入关系为如果用后移算子B,模型的等价形式为5第5页,共96页,2023年,2月20日,星期三
模型的基本原理是输入Xt通过传递函数算子传递到输出Yt上,而随机扰动项通过算子叠加到输出上,最终输出Yt。6第6页,共96页,2023年,2月20日,星期三
一个输入变量的单输出的线性系统的形成机理可以由图5-1表示。动态系统输入xt输出yt随机干扰t图5-1动态系统图示7第7页,共96页,2023年,2月20日,星期三传递函数模型的一般形式
其中(B)、(B)、(B)和(B)是后移算子的多项式,阶数分别为s、r、q及p。
(B)和(B)描述Xt对Yt影响。
(B)和(B)描述随机干扰项对Yt影响。
b称为延迟参数,即Xt的b期滞后值才开始对Yt产生影响Xt。at为随机干扰项。
为传递函数。8第8页,共96页,2023年,2月20日,星期三其中9第9页,共96页,2023年,2月20日,星期三传递函数模型形成机理
图5.2一般传递函数模型形成过程10第10页,共96页,2023年,2月20日,星期三二、脉冲相应函数特征
传递函数是由B的多项式构成,即所以,确定了其传递函数部分三个参数s、r和b,传递函数基本情况就了解了。传递函数的特征为传递函数的三个参数的的判定提供了依据。由于传递函数V(B)是有理函数,则V(B)可以表示为B的无穷阶的多项式。11第11页,共96页,2023年,2月20日,星期三传递函数的多项式形式为V(B)的系数vj(j=1,2,…)称为脉冲响应函数。说明Xt的滞后变量是如何影响Yt。有
可以用待定系数法求V(B)的系数vj(j=1,2,…),vj称为脉冲响应函数,描述Xt的滞后变量是如何影响Yt。12第12页,共96页,2023年,2月20日,星期三总结起来脉冲响应函数有如下几个特征:脉冲响应函数vj的形式,(1)前b个脉冲函数值为零,即v0=v1=…=vb-1;13第13页,共96页,2023年,2月20日,星期三
(2)当时,脉冲响应函数由式确定,因为j-b是不同的参数,这时的脉冲响应函数无固定形式;14第14页,共96页,2023年,2月20日,星期三
(3)当j>b+s时,j-b
均为零,这时则有这恰好是一个r阶的差分方程,可见当j>b+s时的脉冲响应函数是该方程的解,所以当jb+s+1时,脉冲响应函数呈指数衰减,r个初始响应函数为
结合这3点,我们可以得到三个参数r、s和b的值。。
15第15页,共96页,2023年,2月20日,星期三三、常见的传递函数的形式
为了进一步了解传递函数模型,下面给出几个低阶的传递函数模型,从低阶的传递函数模型体会传递函数模型的结构。在应用研究中r和s均较小,一般不超过2。16第16页,共96页,2023年,2月20日,星期三(b,r,s)传递函数脉冲响应函数(2,0,0)(2,0,1)(2,0,2)
1.r=0的情形
,,17第17页,共96页,2023年,2月20日,星期三2.r=1的情形(b,r,s)传递函数脉冲响应函数(2,1,1)(2,1,2),,
,,,
18第18页,共96页,2023年,2月20日,星期三四、传递函数的稳定性在一元的时间序列分析中,需要讨论序列的平稳性,在传递函数模型中,称为稳定性,其稳定性表现在两个方面。一个是针对传递函数讨论。另一个是针对讨论。19第19页,共96页,2023年,2月20日,星期三
从时间序列滞后的特点来看,既往输入系统的变量,滞后期越长,对系统的影响则越小,所以脉冲响应函数vj(j=1,2,…)应该快速收敛到零,这样传递函数则更稳定性。为了满足vj(j=1,2,…)快速收敛到零,则要求E(B)构成的特征方程的根必须在单位圆之内。20第20页,共96页,2023年,2月20日,星期三
对于随机干扰部分的平稳性要求与前面对ARMA模型平稳性的要求是一样的,要求由(B)构成特征方程的根在单位圆之内。21第21页,共96页,2023年,2月20日,星期三【例5.1】假设传递函数模型为讨论其稳定性。,解:由算子构成的特征为其根为22第22页,共96页,2023年,2月20日,星期三
而两个根的模
所以特征方程的根在单位圆之内,传递函数是平稳的。又由于特征方程
的根为0.45,小于1,所以模型的随机干扰项部分是平稳的。所以该传递函数模型是平稳的。23第23页,共96页,2023年,2月20日,星期三第二节传递函数模型的识别与估计
涉及单变量问题的ARMA模型,其识别工具主要是自相关和偏自相关函数的截尾性质,之所以称为自相关,是因为它们均讨论同一变量在两个不同时刻输出之间的相关性。而传递函数的模型是多元的时间序列分析,模型的识别会同时涉及到互相关(交叉相关)和自相关问题,因为自相关在前面的章节已经讨论,所以这里只讨论互相关(交叉相关)的问题。24第24页,共96页,2023年,2月20日,星期三一、互相关函数(一)互相关函数定义定义(互相关函数):给定时间序列Xt和Yt,(t=1,2,…),二者均为一元平稳时间序列。称为互协方差函数。25第25页,共96页,2023年,2月20日,星期三
为互相关函数,记为CCF。互相关函数刻画了两个时间序列之间的时滞相关性,如果(xt,ys)(t<s)很显著,说明xt对yt时滞相关性强。特别值得注意的是互相关函数不仅与时间间隔t-s有关,而且它是不对称,在这一点上与自相关函数不同,如图5-3所示。26第26页,共96页,2023年,2月20日,星期三图5-3互相关函数示意图
27第27页,共96页,2023年,2月20日,星期三对互相关函数非对称性的理解
互相关关系的非对称性是指(Xt,Yt-s)和(Xt,Yt+s)通常不等的性质。比如假设Xt是某种商品的广告费,对于该种商品的销售额Yt来说是广告费是一个领先的变量,它对Yt-s(s>0)的影响可能很小,甚至为零,Xt但是对于Yt+s的影响会比较大,因为当前的广告费会对未来的销售额产生影响。至于相关性会到达什么程度,或者什么方向,要根据实际问题而言。28第28页,共96页,2023年,2月20日,星期三(二)样本互相关函数
由于总体的互相关函数是未知的,通常需要用一个跨度为N的样本来估计总体互相关函数,假设这个跨度为N的样本为(X1,Y1),(X2,Y2),…,(XN,YN),不妨假设Xt和Yt为平稳的时间序列。因为如果二者是非平稳的,总可以经过d阶差分将其转换为平稳的时间序列。样本的互协方差函数为29第29页,共96页,2023年,2月20日,星期三样本的互相关系数为
其中分别是两个序列的均值和标准差。在实际中,为了获得互相关函数有统计意义的估计,样本容量要求至少为50对观测值,但是为了了解互相关函数计算的原理,下面我们模拟一个二变量的时间序列的样本,并给出计算的过程。30第30页,共96页,2023年,2月20日,星期三【例5.1】对表5-3中模拟的序列,计算互相关系数。txtyt11170-12710-42396-2-241271-1514830613102231第31页,共96页,2023年,2月20日,星期三
分别计算出两个序列的均值分别为11和8,标准差分别为2.38和1.53。先计算互协方差函数:32第32页,共96页,2023年,2月20日,星期三
33第33页,共96页,2023年,2月20日,星期三再计算互相关函数
从这里的计算结果可以看出互相关系数不是对称的,即不仅与间隔有关,还与方向有关。34第34页,共96页,2023年,2月20日,星期三
【例5.3】本例的数据来源于Box与Jenkins合著《时间序列分析—预测与控制》序列M。序列M是1970年某种商品的销售额与销售额的领先指标共150对数据,图5-4是领先指标Xt的数据图,图5-5是销售额指标Yt的数据图,图5-6是利用SAS计算的差分数据Xt和Yt的互相关函数。35第35页,共96页,2023年,2月20日,星期三xt91011121314time0102030405060708090100110120130140150图5-4领先指标的趋势图36第36页,共96页,2023年,2月20日,星期三yt190200210220230240250260270time0102030405060708090100110120130140150图5-5销售额的趋势图37第37页,共96页,2023年,2月20日,星期三
LagCovarianceCorrelation-198765432101234567891-70.000943660.00208|.|.|-6-0.048176-.10622|.**|.|-50.0306900.06766|.|*.|-4-0.013401-.02955|.*|.|-30.0247820.05464|.|*.|-2-0.026508-.05844|.*|.|-10.0439850.09698|.|**.|0-0.0014380-.00317|.|.|10.0321680.07092|.|*.|2-0.172487-.38029|********|.|30.3265980.72007|.|**************|40.0473920.10449|.|**.|50.0491760.10842|.|**.|60.0197920.04364|.|*.|70.0640400.14119|.|***|"."markstwostandarderrorsXt的yt互相关函数图图5-6
38第38页,共96页,2023年,2月20日,星期三
“.”标志相关系数两倍标准差处,可以看出当滞后期数k1时,互相关函数显著为零,接着滞后期数k=2和k=3时的互相关函数分别为-0.3803和0.7201,从统计的角度显著不为零,说明Xt的滞后2期和3期对Yt影响显著性。39第39页,共96页,2023年,2月20日,星期三(三)互相关函数与传递函数的关系
如前所述,传递函数模型可以表示为以脉冲响应函数为系数的时间序列各个时刻值Xt,Xt-1,…的加权和,互相关函数又是识别传递函数的模型工具。互相关函数和脉冲响应函数关系如何呢?后面将进一步讨论。40第40页,共96页,2023年,2月20日,星期三假设模型Yt为
设
将两边同时乘以Xt,则两边同时求数学期望,有41第41页,共96页,2023年,2月20日,星期三因为变量Xt与随机干扰项t相互独立,则有,上式两边同时除以x和y,得互相关函数为42第42页,共96页,2023年,2月20日,星期三
从(5.10)式可以看出互相关函数xy(k)、脉冲响应函数vj和X的自相关函数x(k)、之间的关系。如果能从(5.10)式中解出脉冲响应函数,那么模型的传递函数就得到了。遗憾的是(5.10)式的未知参数有无穷项,直接求解是不可能的。但是输入时间序列是白噪声序列,情况就大为不同了,因为白噪声序列的自相关函数为0,这时(5.10)式的右边除了之外,其余的项均为零,则(5.10)式可简化。43第43页,共96页,2023年,2月20日,星期三即简化为如下的形式44第44页,共96页,2023年,2月20日,星期三
这给了我们极好的启示,如果能够找到新序列,其派生于Xt,既带有Xt的信息,又是白噪声序列,问题就可以得到解决。而这时模型的传递函数和互相关函数之间仅相差一个常数因子,这个常数因子是可以通过样本估计出来的。
45第45页,共96页,2023年,2月20日,星期三
如前所述,如果输入的时间序列是白噪声,则可以得到如(5.11)和(5.12)式那样简单的脉冲响应函数与互相关函数的关系式,为了达到这个目的,我们对Xt和Yt做预白化处理,即建立模型过滤Xt和Yt。使输入的是Xt和Yt,而输出的是两个白噪声序列t和t。关于传递函数的预白化过程通过统计软件可以得到。46第46页,共96页,2023年,2月20日,星期三设传递函数模型为假定输入序列Xt是一个平稳序列,其适应的模型为47第47页,共96页,2023年,2月20日,星期三
其中t为白噪声序列,由于是Xt滤波后的结果,含有Xt的信息。假定输出序列Yt与输入序列Xt有同样的特征,那么用这个相同滤波器也可以将Yt进行滤波,得48第48页,共96页,2023年,2月20日,星期三将代入(5.14)式,则49第49页,共96页,2023年,2月20日,星期三
例【5.4】继续利用例【5.3】的数据计算预白化后的序列和的互相关函数。通过识别,差分后的序列服从一阶移动平均模型,建立模型为:预白化变换后的标准差。对yt
施加同样的变换,得预白化数据的标准差50第50页,共96页,2023年,2月20日,星期三互相关函数
LagCovarianceCorrelation-198765432101234567891-7-0.0013061-.00240|.|.|-6-0.034684-.06374|.*|.|-50.0130160.02392|.|.|-40.00125830.00231|.|.|-30.0220450.04051|.|*.|-20.00541250.00995|.|.|-10.0514780.09460|.|**.|00.0342320.06291|.|*.|10.0430600.07913|.|**.|20.0100620.01849|.|.|30.3674420.67523|.|**************|40.2461120.45227|.|*********|50.1854470.34079|.|*******|60.1401600.25757|.|*****|70.1458610.26804|.|*****|80.1078030.19811|.|****|90.0942350.17317|.|***|100.0531150.09761|.|**.|110.0788220.14485|.|***|120.0380380.06990|.|*.|"."markstwostandarderrors图5-7预白化变量序列t和t的互相关函数图51第51页,共96页,2023年,2月20日,星期三
预白化变量序列和的互相关函数第一个显著不为零的为,即滞后期是3时,=0.67523。图5-6和图5-7的图形略有不同,这是因为图5-6是Xt和Yt的互相关图,而图5-7是Xt和Yt被预白化后序列的t和t的互相关图。进一步根据式(5.11)或(5.12)可以计算出模型的脉冲相应函数,以
k=-7为例,计算脉冲相应函数52第52页,共96页,2023年,2月20日,星期三表5-4
互协方差、互相关和脉冲响应函数的计算表滞后期(k)互相关函数脉冲响应函数-7-.00240-0.0167-6-.06374-0.4446-50.023920.1668-40.002310.0161-30.040510.2825-20.009950.0694-10.094600.659800.062910.438810.079130.551920.018490.129030.675234.709440.452273.154450.340792.376953第53页,共96页,2023年,2月20日,星期三图5-8脉冲响应函数数据图54第54页,共96页,2023年,2月20日,星期三
将表5-4的脉冲响应函数在直角坐标系中画出,如图5-8,将图5-8和图5-7相比较,可以看出脉冲响应函数和互相关函数几乎具有相同的模式,这就从非常直观的角度说明,我们完全可以依据互相关函数来判定传递函数分子和分母多项式的阶数r和s以及延迟参数b。55第55页,共96页,2023年,2月20日,星期三二、传递函数模型的识别
传递函数模型有两个部分,一个是传递函数部分,另一个是随机干扰部分。所以模型的识别也包括两个部分。其一:识别传递函数分子和分母多项式的阶数r和s以及延迟参数b的阶数。其二对噪声部分模型的识别。基本步骤是先根据脉冲相应函数与互相关函数的关系估计出,根据的特征确定s、r和b,由于总体的互相关函数是未知的,用样本的互相关函数来估计。56第56页,共96页,2023年,2月20日,星期三步骤如下:1.首先估计预白化变量t和t,计算t和t的相关系数;然后根据估计脉冲响应函数。
2.根据估计出的脉冲响应函数性质判定s、r和b;
3.噪声部分的识别,检查噪声部分的自相关和偏自相关函数的特征。观察噪声部分ARMA模型的阶数。57第57页,共96页,2023年,2月20日,星期三
例【5.5】继续例【5.4】,判定传递函数的阶数r,s和b。从图5.7可以看出,预白化变量序列t和t的互相关函数第一个显著不为零的为r(3),r(3)=0.67523,所以延迟参数为b=3。从开始,脉冲响应函数快速衰减到零,则r=1
,
s=0。初步传递函数的模型为
58第58页,共96页,2023年,2月20日,星期三三、传递函数模型的估计与检验(一)模型的估计根据前面一节的识别过程,通过对系统脉冲响应函数的矩估计,已经对系统的传递函数部分的阶数(r,s,b)和随机干扰项的阶数(p,q)进行了初步识别,用,,和分别表示(),(),E(B)和()的系数向量,它们是待估计的参数向量,根据传递函数的模型可以改写模型为59第59页,共96页,2023年,2月20日,星期三在给定样本序列的条件下,求得样本的残差序列,且是未知参数的函数,即使达到极小的就是参数的最小二乘估计,而是方差的估计量。60第60页,共96页,2023年,2月20日,星期三解:我们选择第二个模型进行估计。(1)首先对模型的传递函数部分进行估计,得例【5.6】续例【5.3】对模型进行估计。61第61页,共96页,2023年,2月20日,星期三参数估计相应的统计量如表参数名估计值估计量的标准差
t统计量
p值4.6870.0780860.03<.00010.7260.00702103.41<.0001从t检验的结果可以知道0和1在统计上是显著不为零的,即传递函数部分的模型显著。62第62页,共96页,2023年,2月20日,星期三LagCorrelation-198765432101234567891StdError01.00000||********************|01-.31447|******|.|0.08304520.07467|.|*.|0.09088830.00882|.|.|0.0913104-.03802|.*|.|0.09131550.15943|.|***.|0.09142560.02877|.|*.|0.0933227-.07483|.*|.|0.09338380.08285|.|**.|0.0937969-.10321|.**|.|0.094299100.13444|.|***.|0.09507511-.00392|.|.|0.09637712-.00336|.|.|0.096379"."markstwostandarderror图5-9传递函数部分残差ut的自相关图(2)识别传递函数部分模型的残差序列遵从的模型,从残差序列ut的自相关图可以知道,其自相关函数一阶结尾,如图5-9,则初步识别ut是一阶移动平均模型。63第63页,共96页,2023年,2月20日,星期三
(3)根据(2)的结果,得传递函数模型的初步形状估计整个模型,得或64第64页,共96页,2023年,2月20日,星期三参数名估计值估计量的标准差t值P值0.29560.08033.680.00034.71790.071166.366<.00010.72480.0055131.87<.0001从t统计量可以看出,和
在统计上显著不为零,即传递函数模型显著。该系统可以解释为输入变量Xt
通过
对输出变量Yt产生影响,随机干扰项通过叠加到系统上,广告费对产品销售有滞后3期的影响。65第65页,共96页,2023年,2月20日,星期三(二)模型的检验
在系统被识别和估计之后,还需要对模型进行诊断,检验模型的有效性。检验的内容有两类:
其一是整个传递函数模型的是否欠拟合,即检验模型的残差是否存在自相关;其二是残差序列与Xt派生的预白化序列t是否互相关。66第66页,共96页,2023年,2月20日,星期三检验的假设为残差序列不存在自相关,检验的统计量为:(5.19)其中:p和q是干扰模式的参数个数,K一般取得足够大。
如果检验的P值=时,Q0为由样本计算出的统计量值,则接受无序列相关的假设,模型是适合的;否则当模型有序列相关,需要修正改进。1.残差序列自相关检验67第67页,共96页,2023年,2月20日,星期三2.残差序列互相关检验因为传递函数模型为可以改写为(9.20)68第68页,共96页,2023年,2月20日,星期三
从计量经济的经典假定看,输入序列Xt与
Xt的派生序列t应该与随机干扰项相互无关,所以检验它们是否存在互相关是必要的。检验的统计量为(5.21)其中r+s+1是传递函数部分的参数个数,n是模型估计的残差个数,l是模型参数个数。如果其中S0为由样本计算出的统计量值,则接受无序列相关的假设,模型是适应的;否则模型存在输入变量与残差序列互相关,需要修正改进。69第69页,共96页,2023年,2月20日,星期三【例5.7】续【例5.6】,对模型进行残差自相关和输入变量与残差序列的互相关检验。表5-7自相关函数表滞后期K
自相关函数1-6-0.0300.0850.0370.0220.1840.0687-12-0.0410.0590.0500.1270.028-0.01413-18-0.0590.0300.0230.064-0.1030.06618-240.069-0.0130.025-0.079-0.0760.08670第70页,共96页,2023年,2月20日,星期三
根据模型的结构b=3,r=1和s=0,再有模型做了一阶差分,则。所以有效的样本容量为146。根据(5.19)式,分别计算K=6,12,18和24统计量,如K=6时,71第71页,共96页,2023年,2月20日,星期三
计算的结果列在表5.8,可以看出该模型的残差不存在自相关。表5.8残差自相关检验统计量表K自由度
统计量P值657.400.195121111.270.4213181715.230.5791242319.550.668672第72页,共96页,2023年,2月20日,星期三表5-7变量输入变量与残差的互相关函数滞后期k变量输入变量与的互相关函数0-50.0060.107-0.1290.058-0.0520.1996-110.0100.0040.0440.0640.0180.09312-170.016-0.019-0.015-0.0290.0840.04318-23-0.1290.1060.0290.063-0.0460.11273第73页,共96页,2023年,2月20日,星期三根据(5.21)式计算K=5,23时的统计量值。74第74页,共96页,2023年,2月20日,星期三表5.10残差互相关检验统计量表K自由度统计量P值5410.470.0332111012.600.2466171614.110.5905232220.850.302从计算的结果可以看出,不能拒绝残差与输入变量无互相关的假设,故认为残差与输入变量显著无关。当模型的诊断检验确定模型是适宜的,则进而可以利用模型进行结构分析和预测了。75第75页,共96页,2023年,2月20日,星期三第三节干预模型时间序列常受诸如节假日、罢工、促销和其他政策变化之类的外部事件的影响,我们称这类外部事件为干预。由于外部事件的干预使时间序列呈现出一些异常,如果不对这些异常值进行处理,直接对观测值建模,其模型会缺乏代表性,不处理异常值的模型既不能代表发生干预以前的数据,也不能代表干预发生以后的数据。76第76页,共96页,2023年,2月20日,星期三
那么如何处理这些由于外部事件的干预所产生的异常值,从而使模型有更好的拟合优度呢?一种比较直观和常见的处理方法是在模型中引入一个仅仅取0和1的变量,用以评估外部事件的发生对经济变量的影响,这种变量称为干预变量,相应的分析通常称为干预分析。本节讨论干预发生时间已知的情形,通常干预变量分析也用来分析时间序列是否有异常值发生。77第77页,共96页,2023年,2月20日,星期三二、干预变量的类型和组合
实际上干预模型就是在模型中引入干预变量,下面我们引入干预变量形状。(一)干预变量有两种最简单的干预变量是阶跃函数和脉冲函数。当外部事件在T时刻发生后,一直对经济变量有影响,这种干预可用阶跃函数式表示,如图是阶跃函数的图形。78第78页,共96页,2023年,2月20日,星期三t1T阶跃函数79第79页,共96页,2023年,2月20日,星期三t1T另一种干预在时刻T,仅对该时刻有影响,马上会快速回到干预没有发生前的情形,这种干预变量用脉冲函数式表示。如图所示。脉冲函数80第80页,共96页,2023年,2月20日,星期三(二)干预模型中常见的干预变量的形状实际上,当干预发生之后,经济现象并非马上做出反映,或者有一定的滞后期,或者当干预发生后经济现象做出的反映可能是缓慢上升或缓慢下降,可能开始时缓慢上升而后又缓慢下降回到没有发生干预的水平,由此我们总是可以将阶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中职第一学年(护理伦理学)护理职业道德阶段测试题及答案
- 2025年大学大二(软件工程)软件测试技术综合测试题及答案
- 2025年高职护理(护理技能考核)试题及答案
- 2025年大学(中药学)中药资源学阶段测试题及答案
- 2025年大学三年级(口腔医学技术)义齿制作工艺试题及答案
- 2025年高职电子(电子测量技术)试题及答案
- 2025年高职机场鸟击防范技术(机场鸟防基础)试题及答案
- 2025年高职工业机器人技术(工业机器人)试题及答案
- 2025年中职体育服务与管理(体育场馆管理)试题及答案
- 2026年湖北国土资源职业学院单招综合素质考试备考题库带答案解析
- (完整版)物业管理服务方案
- 全国中医护理骨干人才培训汇报
- 胸腔镜手术配合及护理
- 《浙江市政预算定额(2018版)》(第七册-第九册)
- 军队功勋荣誉表彰登记(报告)表
- 户外探险俱乐部领队管理制度
- 移动通信基站天线基础知识专题培训课件
- 《军队政治工作手册》出版
- 电子商务专业教师教学创新团队建设方案
- 2023年中国海洋大学环科院研究生培养方案
- GB/T 16927.1-2011高电压试验技术第1部分:一般定义及试验要求
评论
0/150
提交评论