甘肃省武威市凉州区永昌镇和寨九制校2023届中考数学猜题卷含解析_第1页
甘肃省武威市凉州区永昌镇和寨九制校2023届中考数学猜题卷含解析_第2页
甘肃省武威市凉州区永昌镇和寨九制校2023届中考数学猜题卷含解析_第3页
甘肃省武威市凉州区永昌镇和寨九制校2023届中考数学猜题卷含解析_第4页
甘肃省武威市凉州区永昌镇和寨九制校2023届中考数学猜题卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()A.135° B.115° C.65° D.50°2.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A. B. C. D.3.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是()A. B. C. D.4.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-105.若,则()A. B. C. D.6.在解方程-1=时,两边同时乘6,去分母后,正确的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)7.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125° B.135° C.145° D.155°8.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数9.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步 B.5步 C.6步 D.8步10.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C. D.11.计算3–(–9)的结果是()A.12 B.–12 C.6 D.–612.下列运算正确的是()A.a3•a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第_____象限.14.不等式组的解集为_____.15.如图的三角形纸片中,,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则的周长为__________.16.一个凸边形的内角和为720°,则这个多边形的边数是__________________17.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.18.如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在中,,且,,为的中点,于点,连结,.(1)求证:;(2)当为何值时,的值最大?并求此时的值.20.(6分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)设月上网时间为xh(x为非负整数),请根据表中提供的信息回答下列问题(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由21.(6分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.22.(8分)已知,如图,是的平分线,,点在上,,,垂足分别是、.试说明:.23.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.24.(10分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.25.(10分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.26.(12分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?27.(12分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P=

∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点

P

,连接

PA

PB.∵OA=OB

,∴∠OAB=∠OBA=25°

,∴∠AOB=180°−2×25°=130°

,∴∠P=∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键.2、A【解析】

根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.

错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.

3、A【解析】

一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.4、C【解析】

根据多项式乘以多项式的法则进行计算即可.【详解】x-2x+5故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.5、D【解析】

等式左边为非负数,说明右边,由此可得b的取值范围.【详解】解:,

,解得故选D.【点睛】本题考查了二次根式的性质:,.6、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故选D.点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.7、A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.8、C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.9、C【解析】试题解析:根据勾股定理得:斜边为则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故选C10、B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、,每个象限内,y随着x的增大而减小,故此选项错误;D、,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.11、A【解析】

根据有理数的减法,即可解答.【详解】故选A.【点睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数.12、D【解析】

各项计算得到结果,即可作出判断.【详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、一【解析】∵一元二次方程x2-2x-m=0无实数根,

∴△=4+4m<0,解得m<-1,

∴m+1<0,m-1<0,

∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.

故答案是:一.14、﹣2≤x<【解析】

根据解不等式的步骤从而得到答案.【详解】,解不等式①可得:x≥-2,解不等式②可得:x<,故答案为-2≤x<.【点睛】本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.15、【解析】

由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.【详解】∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,∴BE=BC,DE=DC,∴的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:【点睛】本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.16、1【解析】

设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.【详解】解:设这个多边形的边数是n根据多边形内角和公式可得解得.故答案为:1.【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.17、(﹣,1)【解析】如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴点C坐标(﹣,1),故答案为(,1).点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.18、.【解析】

由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.【详解】∵六边形ABCDEF是正六边形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案为:.【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)时,的值最大,【解析】

(1)延长BA、CF交于点G,利用可证△AFG≌△DFC得出,,根据,可证出,得出,利用,,点是的中点,得出,,则有,可得出,得出,即可得出结论;(2)设BE=x,则,,由勾股定理得出,,得出,求出,由二次函数的性质得出当x=1,即BE=1时,CE2-CF2有最大值,,由三角函数定义即可得出结果.【详解】解:(1)证明:如图,延长交的延长线于点,∵为的中点,∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,点是的中点,∴,.∴.∴.∴.在中,,又∵,∴.∴(2)设,则,∵,∴,在中,,在中,,∵,∴,∴,∴当,即时,的值最大,∴.在中,【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.20、(1),;(2)当35<x<1时,选择B方式能节省上网费,见解析.【解析】

(1)根据两种方式的收费标准,进行分类讨论即可求解;

(2)当35<x<1时,计算出y1-y2的值,即可得出答案.【详解】解:(1)由题意得:;即;;即;(2)选择B方式能节省上网费当35<x<1时,有y1=3x-45,y2=1.:y1-y2=3x-45-1=3x-2.记y=3x-2因为3>4,有y随x的增大而增大当x=35时,y=3.所以当35<x<1时,有y>3,即y>4.所以当35<x<1时,选择B方式能节省上网费【点睛】此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键.21、(1),;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴.解得.∴a的值为,该方程的另一根为.(2)∵,∴不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2.一元二次方程根根的判别式;3.配方法的应用.22、见详解【解析】

根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD为∠ABC的平分线,

∴∠ABD=∠CBD,

在△ABD和△CBD中,∴△ABD≌△CBD(SAS),

∴∠ADB=∠CDB,

∵点P在BD上,PM⊥AD,PN⊥CD,

∴PM=PN.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.23、(1)3+【解析】

(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=3x,根据AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解决问题.

(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【详解】解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)•6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.24、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3).【解析】试题分析:(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下图2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长.试题解析:(1)如图1,连接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,设AH=3a,AC=5a,则CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN===.25、(1)证明见解析;(2)25°.【解析】试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直径,PA与相切于点A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论